

Page 2 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

8-bit Christmas Holidays
After a year like this one, spent mostly indoors or with a mask over your
face, you may not feel much like celebrating the Christmas holidays, if
for no other reason than the staggering number of victims of this damn
virus. It is now mid-December, but it is not the same atmosphere as in
previous years. This pandemic has psychologically drained us, mentally
exhausted us. If last year, as always, the horizon of the future seemed
clear and without any particular threatening clouds, now, despite the
imminent arrival of vaccines which should mark the 'point of return' to a
renewed normality, everything seems to us to be shrouded in a cold
transparent cloth from which we have yet to escape. And it is not the
typical cold of the winter season that is looming, it is not the snow that
has already covered some places in many parts of Europe. The whole
planet is hurting, our cities seem dull, all the lights and decorations in
our cities seem less festive, the snow that has fallen a few days ago no
longer brings the cheerfulness and light-heartedness typical of the end-
of-year holidays, the cold temperatures of the incipient winter do not
have the flavour that makes us say that Christmas is in the air.

It's a bit like living in an 8-bit world, with low resolution graphics, few
sprites, limited colours or even black and white only. Think about it: only
one year ago the world as we know it looked like a very powerful PC with
64-bit multi-core CPU, 4K display, super-fast GPU capable of displaying
millions of colours, full-stereo sound card. And, let's face it, with not
much soul either. The coming holidays show us a more unadorned,
austere, less consumerist and less glitzy reality than that we are used to.

Do you remember how much fun and fantasy lit up the reality of the 80s,
when our beloved 8-bit computers, with their 16 colours, croaking sound
chips and rubbery keyboards, filled our days? It wasn't all ready and
available before our senses. Half an hour to load a cassette game, floppy
disks that were often unreadable after only a few uses and joysticks that
broke all the time. Everything was more frugal and modest and we had
to use a lot of imagination to believe that certain sprites or graphic
backgrounds had at least a semblance of reality. And do you recall game
covers? Fantastic images that made our imagination run wild, often to
compensate for the graphical, sound and animation poverty of the video
game included. Every day, though, was like a revelation, a step forward,
a passion renewed by the constant desire to learn new things and make
new discoveries.

So, in these 8-bit Christmas holidays of 2020, let's try to start again by
using our inventiveness, creativity and passion to light up the colours of
our holidays once again. One way to do that is to enjoy this outstanding
issue #05-EN of RetroMagazine World, with over 70 pages full of
surprises, news and exclusives.

Happy holidays to all and a special wish for the coming year. May it bring
a true renaissance and lead us to a new era of solidarity and friendship.
Then we will celebrate the next Christmas holidays in the right
atmosphere.

David La Monaca

SUMMARY
◊ LM80C - homebrew computer - part 4

◊ NINTENDO 64 - Mario's 3D revolution

◊ UNO2IEC HOST interface cable

◊ Introduction to the MEGA65

◊ The MOS VIC video chip

◊ Flash News!

◊ A Snake's clone for the C64 on cartridge

◊ Coding without GOTO on the ZX Spectrum

◊ A bit of rarity: using Sinclair fonts to create
custom stickers

◊ SymbOS - Windows on the Amstrad CPC!

◊ When the sprite collisions don't collide!

◊ May the FORTH be with us - part one

◊ Life: the game of life

◊ Accessing a PETSCII BBS from the web

◊ Making music for a retrogame

◊ Introduction to ARexx - part 4

◊ Japan episode 15: Oh no! More G&W!

◊ Exclusive interview with Randall Flagg

◊ The Real Ghostbusters Arcade Fangame

◊ Metamorphosis (ZX Spectrum) Preview

◊ Loom (Amiga)

◊ Holiday Lemmings (Amiga)

◊ Weird Dreams (C64)

◊ Mighty Final Fight (NES)

◊ Mario Kart 64 (N64)

◊ Wiz Quest for the Magic Lantern (Amiga)

◊ Zeta Wing (C64)

◊ Super Mario 64 (N64)

◊ Final Fantasy VII (PS1/PC)

◊ Sydney Hunter/Caverns of Death (SNES)

◊ Ristar (MegaDrive)

 Pag. 3

 Pag. 7

 Pag. 10

 Pag. 15

 Pag. 17

 Pag. 20

 Pag. 21

 Pag. 28

 Pag. 30

 Pag. 32

 Pag. 36

 Pag. 38

 Pag. 41

 Pag. 42

 Pag. 48

 Pag. 51

 Pag. 55

 Pag. 58

 Pag. 64

 Pag. 68

 Pag. 70

 Pag. 72

 Pag. 73

 Pag. 74

 Pag. 76

 Pag. 78

 Pag. 79

 Pag. 80

 Pag. 82

 Pag. 83

 Pag. 84

People involved in preparing this issue of
RetroMagazine World (in no particular order):

• Alberto Apostolo
• Gianluca Girelli
• Michele Ugolini
• Carlo N. Del Mar Pirazzini
• Daniele Brahimi
• Flavio Soldani
• Francesco Fiorentini
• Attilio Capuozzo
• Marco Pistorio
• Leonardo Miliani
• David La Monaca

• Giovan Battista “giomba”
Rolandi

• Antonino Porcino
• Phaze101
• Starfox Mulder
• Simone Battaglioni
• Hakim Rezki
• Roberto “Il Bardo” Del

Mar Pirazzini
• Cover by Flavio Soldani

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 3 of 86

HARDWARE

The topic of this article is slightly different from the others
because we are going to look at computer analysis more
from a software point of view while last time we focused
on hardware.
The LM80C computer is a complete and functional machine,
equipped with interesting features that, as we have seen
in previous articles, are respectable and would have allowed
it not to disfigure among the 8 bits in vogue in the 80s,
being able to side by side with the most popular systems
of that period. But what makes the LM80C a fun computer
to use is its ease of use: it integrates an operating system
that allows you to use its distinctive features such as
graphics and sound at power up, without the need for
additional software. To ensure, in fact, that home computers
could be used as soon as they were removed from the box
even by the most inexperienced users, they were equipped
with an integrated programming language that also fulfilled
the functions of command interface, thanks to which it
was possible not only to insert programs but also to drive
the hardware without resorting to routines in machine
language. The complex software that oversees the
management of the machine is therefore, in a home
computer, as important as the hardware itself: it was
precisely their ease of use that, among other things,
allowed it to be widely used.

The operating system of an 8-bit home computer is
generally structured on multiple levels. The highest level
is, as mentioned, represented by an input/output interface
thanks to which the user can type commands in a pre-
loaded language and instruct the computer to perform
operations, such as printing the result of a mathematical
calculation, reading a program from a mass device or
emitting a sound. The underlying layer consists of the
installed language parser, which analyzes the commands
entered and translates them into a series of even more
elementary tasks that are performed by the system to
perform the operation requested by the user. If the operation
to be requested also involves the hardware, even lower
level routines are called that communicate directly with
the system components. The LM80C is also structured
like this, as we shall see. But let's start with language.

The Integrated BASIC INTERPRETER
The LM80C BASIC, a dialect of THE POPULAR BASIC
language, is pre-installed in the LM80C (see figure 1 for
an example list). Take for example the following two
instructions in LM80C BASIC:

SCREEN 2: CIRCLE 128,96,50,8

They tell the computer to switch to graphics mode 2 and
draw a circle of radius 50, centered on the screen, using
the color red. How does the system interpret these
instructions and generate the result on the screen? It
succeeds because in its ROM (non-volatile memory, which
does not lose data when the power supply to the machine
is removed) an interpreter has been inserted that analyzes
the commands typed by the user and transforms them
into a series of machine language operations executable
by the CPU. BASIC, like other programming languages, is
actually a facility for us humans: it allows us to use a
communication system that is easy to understand and
write because the CPU understands only the “machine”
language (it is not by chance called that), that is, the
values 0 and 1. To simplify programming, instead of having
an endless series of numbers inserted that are meaningless
to us humans, the assembly was initially invented (not to
be confused with “assembler”, which is instead the
assembler program, which transforms the assembly source
into machine language), a very low level language of the
"mnemonic” type because it consists of acronyms that
help to “remember” the instruction they represent. An
example of assembly code Z80 with, next to the "meaning”
for the programmer:

INC A → INC (Remittance) A
CP $10→ C (om)P(are to) $10
JP NZ,$8000 → J(um)P (if) N(ot) Z(ero to) $8000

Instructions mean, in order: increment counter A; compare
its value to 16 (the decimal equivalent of hexadecimal
value $10); if it is not equal, skip to memory address
32768 (decimal for $8000). I spoke of "assembly Z80”
because each CPU, as it is different from the others, has
a very precise set of instructions and, consequently, its
own assembly. For example, assembly statement 6502
LDX #$10, which means "load the decimal value 16 into
the X registry”, makes no sense in assembly Z80 either
because of the different syntax of the instructions themselves
or because it does not have the X registry. It is obvious
that writing in assembly is very complex: to simply assign
a value to a variable you have to break down the task into

LM80C Color Computer
A 2019 self-built Z80-based home computer - part 4

by Leonardo Miliani

Page 4 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

HARDWARE

many small operations (see figure 2 for an example of a
portion of the firmware of the LM80C in assembly Z80).
In order to meet the earliest users, but also to speed up
the writing of the programs to the more experienced ones,
the so-called high-level languages were developed, that
is, languages that were easier to write and more intuitive
to read and understand, which were also integrated into
the memories of computers of that period.

The language that between the late 70s and early 80s of
the 20th century went for the most was BASIC! The
language was born in 1964 (yes, it is more than 50 years
old!) at the University of Dartmouth (USA) by Professors
John Kemeny and Thomas Kurtz, who developed this
language to facilitate the learning of computer science
for their students. THE BASIC spread very quickly thanks
to several factors but, mainly, because its inventors decided
not to patent it and keep it confined in their university:
they also did an intense work of dissemination also at
other institutions so that many people began to use it.
The fact that it was a language that did not require much
resources (the first interpreters occupied a few KB of
memory) made it perfect for use on microcomputers that
began to spread in the 70s and the use of a generic
language led people to write programs for the most varied
tasks and to publish them also in the magazines and
newsletters of computer enthusiasts clubs of the time.
Microsoft itself began its commercial ascent by selling a
BASIC interpreter, initially for the Altair 8800 and later
distributing it for each type of machine. Microsoft BASIC
became so popular that it eventually established itself as

a standard and many computer builders, such as Comoodore,
Apple, and Atari, decided to adopt it directly or use a
BASIC interpreter derived from it. Using A BASIC interpreter
was an obvious choice at the time: it allowed you to have
a very common language when turning on the machine
that could be used after a short learning period.

The LM80C BASIC is derived from Nascom BASIC, which
is derived from Microsoft BASIC. Nascom BASIC was a
BASIC interpreter that Nascom Computers, an English
manufacturer active in the late 70s of the 20th century,
distributed for its computers and terminals. It was derived
from the Z80 version of Microsoft BASIC and maintained
great compatibility with it. And so it is for the LM80C
BASIC: apart from the differences related to different
hardware architectures, a program in Microsoft BASIC
can run with a few modifications on the LM80C. I chose
Nascom BASIC as my starting point because Nascom's
computers were so widespread that in the early 1980s a
thriving community had formed with several dedicated
publications: the interpreter's complete and commented
source was published on one of them. The LM80C BASIC,
like Microsoft BASIC, is an interpreted language (although
BASIC was born as a compiled language): this means that
behind there is no compiler that first transforms the source
into machine code executable by the CPU but there is an
interpreter that analyzes each command entered and,
once recognized, executes the corresponding procedures
in machine language.
Returning to our initial example, the interpreter will first
encounter THE SCREEN 2 statement. Once the command

Figura 1: An example of a program in LM80C BASIC

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 5 of 86

HARDWARE

is recognized as one of the valid ones, the interpreter will
call the corresponding procedure which, after verifying
the correctness of the syntax (for example, it will check
that the requested video mode is valid), will set the
requested video mode by running specific sub-procedures,
always in machine language, thanks to which the necessary
data will be sent to the video chip. So here are the different
layers of system software that we mentioned earlier. Once
the instruction has been executed, the interpreter will
continue the analysis of the command line received, and
will find the character of the 2 points: this is interpreted
as a kind of warning that signals to the interpreter that
“there is something else”, that is, that the interpretation
of the line is not finished. Moving on, YOU'll find THE
CIRCLE 128,96,50,8 statement. Here the situation is
slightly more complex because the parameters are not
only higher but the last one is also optional, i.e. it can be
passed or not: in thelatter case the computer must use
the default color. Once the syntax analysis is finished, the
execution of a very complex machine language routine
begins that calculates the coordinates of each single point
constituting the circumference. Once the coordinates are
found, a second procedure is called, of a lower level, which
displays a point given a pair of X,Y coordinates. The first
analysis that it makes concerns the control of the visibility
or not of the point, that is, whether the past coordinates
fall on the visible portion of the screen or not: in this case
the point is not drawn. If the coordinates are valid, another
procedure transforms the coordinates into the address of
the video memory cell that contains the pixel to display
and then turns on the corresponding bit and sets the

required color. All this is repeated for all points of the
circumference. At the end of this command, the interpreter
will parse the last line and, finding no other command,
return the control to the user. It will be returned to what
is called “direct mode”, a special mode where each command
entered is executed immediately. Actually things are a
little more complex than that...

Firmware
It is not true that only by pressing the “RETURN” button
(or “ENTER” on the machines that came from the United
Kingdom) the system executes the entered commands,
because there is a program that runs continuously, and
it is the one that manages the interface with the user: it
continuously analyzes all the input peripherals waiting
for a data coming from outside. For example, the system
reads the keyboard at regular intervals and displays the
character corresponding to the key pressed on the screen.
If the program is requested to start in memory, the control
passes to the interpreter, who will execute the list line by
line. But even in this case the firmware stays “on the alert”
because it continues to manage the display of printed
characters on the screen, moves any sprites, generates
sounds when required, reads the keyboard for input and
so on. The complex software of a computer stored in THE
ROMA that serves its operation is called firmware: this
English word, which derives from the union of "firm” and
“software” and which in Italian sounds almost like
“permanent logical part”, indicates the software preinstalled
in a system that, usually, the end user cannot or is not
able to modify and that deals with the startup of the

Figura 2: The beginning of the routine related to the KEY command that allows
to manage the tasks assigned to the function keys.

Page 6 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

HARDWARE

machine and the management of its basic functions.

The firmware of the LM80C is not only made up of THE
BASIC interpreter which, however, occupies much of the
embedded code. There are several portions (Figure 3):
• the bootloader, which is called when the computer is
reset and is responsible for initializing the hardware;
• the BIOS, composed of a whole series of low-level
functions that allow direct access to computer hardware;
• the interrupt manager, which manages both the system
interrupt, which is called at regular intervals and which
deals with all the timed operations of the system such as
the periodic reading of the keyboard, the deactivation of
the playback of sound tones, the flashing of the cursor,
and other, as well as the interrupts raised by the peripherals
of the computer;
• the actual BASIC interpreter that can work both directly
and indirectly;
• the screen editor, which manages the printing of characters
on the screen and the movement of the cursor, acting as
a real interface between user and machine.

The bootloader is a few lines of code. It directs the CPU
to a specific point on THE ROMA after a reset and from
there the system starts starting: the logo is displayed, the
system timer used as a timer for the operations to be
repeated at regular intervals is set, the interrupt vectors
for the peripheral chips and the standard video mode are
set, and then the control is left to the interpreter. The
interpreter does not dialogue directly with the user, but
the user interacts with the computer through the screen
editor. The editor allows you to move the cursor and insert
commands at each point of the video. The keys are read
by a routine called by the interrupt handler, which scans
the keyboard at regular intervals to see if the user has

pressed anything. If it is a common key, the character
matcher is displayed in the cell occupied by the cursor:
to do this several BIOS routines are called that dialogue
directly with the video chip. These wheels transform the
X and Y coordinates of the cursor into the address of the
corresponding memory cell and video and then write the
data to be displayed in it. If the “RETURN” key is pressed
then all the text on the line is passed to the interpreter
who analyses it and executes any commands. Commands
also rely on BIOS to perform their functions: for example,
to play a note or write a character.

The core of THE BASIC interpreter was available on the
network but, as mentioned, it was developed for a computer
of terminal type, that is, with which it is possible to interface
through a serial link and which accepts and returns data
on that channel. For this reason, the initial firmware was
just under 8 KB and did not offer many features. Drafting
the screen editor took several weeks of work and KB of
code (including character maps for 6x8 and 8x8 pixel
fonts, drawn entirely by hand). Added to this was the work
to make the system serial independent and transform it
into a real home computer, with input passed from the
keyboard and output displayed on the screen. In addition
to this you add all the code written to manage all the new
graphical and audio commands of the computer that, of
course, were not present in a terminal. In the end the final
work led to 19 KB of firmware, and the work of drafting
the code was longer and more demanding than that for
the realization of the hardware part. This is to make it clear
that if you decide to go down the road of creating a computer
from scratch you have to consider that this process is not
only about choosing chips and designing a motherboard
but also awaits you a lot of work of drafting the code to
make it work and be able to use it and make the most of it.

Useful links
• Project reference website:
http://www.leonardomiliani.com/en/lm80c/
• Electrical diagrams and firmware source code:
https://github.com/leomil72/LM80C
• Hackaday page:
https://hackaday.io/project/165246-lm80c-color

Figura 3: The structure of the firmware

https://www.leonardomiliani.com/en/lm80c/
https://github.com/leomil72/LM80C
https://hackaday.io/project/165246-lm80c-color-computer

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 7 of 86

HARDWARE

The Nintendo 64 was Nintendo's latest cartridge console,
the fifth generation console born as heir to that Super
Nintendo that revolutionized the world of video games
during the 1990s.

The N64 was produced by Nintendo between 1996 and
2002, first released in Japan and later in the United States
(in September 1996). It arrived on the European market
in March 1997. For many children born between the late
1980s and early 1990s it was the most coveted gift for
Christmas and for a time it was the number one rival of
Playstation 1, but then came second in the console war
of that generation (annihilating the Sega Saturn in sales).

The development of titles for this console ended in 2002
with the publication of The Legend of Zelda Wind Waker
and Resident Evil 0, also released in an improved version
on GAME CUBE (we talked about the GAME CUBE on RMW
22 Italian issue, ndR).
With 32.93 million specimens sold worldwide, it is still an
impressive number. The Nintendo 64 actually marked a
real revolution in the field of video games, offering the
first real three-dimensional gaming experience with high
quality titles and still authentic milestones of their kind,
and had positive results all over the world. However, in
the last years of sale it was surpassed by rival PlayStation,
which set a record selling over 70 million units, but with
results significantly higher than those of the Sega Saturn
whose sales reached only 9 million units.

The machine is presented as a rectangular box of black
colour (but over the years special editions were also
released characterised by different colours and also
transparent, ndR) with rounded edges and which has a
slot on the upper side for inserting the cartridges containing
the games and on the front 4 connectors for gamepads,
without buying external peripherals.

Function, as we said, by means of cartridges that are
directly inserted into the machine. This system allows to
store less data than CD-ROMs, but allows minimum loading

times, possibility of saving without the aid of memory
cards, presenting a cartridge recognition system through
an electronic circuit called Checking Integrated Circuit
flanked by a Serial Peripheral Interface type bus. During
the period she was criticized for two things. The high cost
of cartridge games and precisely the non-use of CD ROMs.
It was a historical period where the CD ROM represented
the future, it was very cheap and it was possible to use
consoles equipped with a cd rom player as dvd players.
Features four gamepad outputs, so you can play with
multiplayer titles for four players without having to buy
additional media like Sony's Multitap. Below the gamepad
there is a slot that allows you to insert additional devices.
In front of the console there is a slot to insert a new RAM
bank. Unlike its predecessor (the Super Nintendo), the
Nintendo 64 cannot output an RGB video signal, nor, in
the European version, even S-Video. This means that a
European N64 has composite video as the best possible
output video signal. Below the console there is a slot used
to connect the console with the Nintendo 64DD, hardware
expansion output only in Japan.

True innovation comes through the joypad, among fans
called tricorn because of its particular shape with 3 handles
to grab it, presents:

An analog lever in the
center of the controller,
with octagonal base, on
the center handle.
A digital cross to the left
of the controller.
Six front keys, two of which
are called A and B (blue
and green, respectively),

the other four are yellow, the middle of which is the letter
C and on each of them there is a directional arrow (in the
Nintendo GameCube controller they were then replaced
by a second analog lever, called stick C).
3 back keys, L and R on the left and right respectively, and
Z on the back of the controller's central handle.
START button in the middle of the controller.

Expansion at the top of the back of the controller, designed
to accommodate three additional optional accessories:
the Rumble Pak, which allowed a vibration function.
the Pak Controller, an additional memory used by some
games, which allowed the saving of optional data.
the Transfer Pak, an accessory that allowed you to transfer
some game data between the Nintendo 64 and the Nintendo
Game Boy, the Nintendo portable console. It was poorly
supported, as it allowed the transfer of photos taken with
a Game Boy accessory, the Game Boy Camera, and the

NINTENDO 64 - Mario's 3D revolution
by Carlo N. Del Mar Pirazzini

Fig. 1 - Nintendo 64 and its controller

Page 8 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

HARDWARE

transfer of data between the Pokémon Stadium and
Pokémon Stadium 2 titles with the three Game Boy Pokémon
titles present at the time (Pokémon Red, Blue and Yellow).

It can be used in two configurations: in the first you use
it with your hands on the external handles, neglecting the
analogue lever and the Z key, in the second you prefer the
central handle going to exploit these two elements,
neglecting the digital cross and the L key. However, it was
generally the games that "imposed" one of the two game
configurations. The game The Legend of Zelda: Ocarina
of Time introduced a game technique, currently used in
recent games, extremely innovative, which allowed, for
example in a fight against an enemy, to "hook" the target
in question, or have the camera automatically frame it in
every game situation, regardless of the movements made
by the protagonist character and the target itself; it is
called Z-targeting, precisely depending on the fact that
this"hooking" is done by pressing the Z key.

The other two major innovations of this controller were
the introduction to the mass video game market of the
analogue lever and the vibration function (optional); given
the importance of these two new features, Sony later also
equipped the PlayStation with a revision of its controller,
in fact creating a second version, the DualShock, which
now had two analogue levers and the integrated and self-
powered vibration function.

DEVICES

During the Nintendo 64 lifecycle, several official console
add-ons were produced:
Pak controller: a 256 kB memory that was inserted under
the pad, divided into 123 "pages". Subsequently Nintendo,
realizing the minimum size of this memory card, decided
to create other versions from the size of 1 to 4 MB.
Expansion Pak: This is a 4MB RDRAM bench (Rambus
DRAM) that goes alongside the original 4MB bench mounted
on-board, this allows you to reach 8MB of RAM, allowing
you to use high game definitions and many other
improvements. Although it is supported by several games,
some of these can only work if the Expansion Pak has been

installed on the console, while others need the Expansion
Pak in order to activate some extra features of the game.
Rumble Pak: it is an accessory that vibrates in the gamepad
during the game following events generated in the game
environment. This accessory is now considered a standard
available for all consoles of the latest generations. It is in
fact a motorcycle powered by 2 mini-style batteries.Fig. 2 - Nintendo 64 can count on a very wide range of

titles with several Nintendo exclusives

Technical Specifications
Central Processing Unit:
4.6 million transistor @ 93.75 MHz NEC VR4300-64
bits
24 kB top-level cache
MIPS/R4300i RISC architecture
Total CPU Math Capacity: 93.0 million operations per
second
Manufacturing process at 0.35 µm (micrometers)

Graphics Processing Unit:
Silicon Graphics-RPC Reality 64-bit @ 62.5 MHz
Coprocessor
Vector unit for 8-bit integers
Peak graphical rendering equal to 150,000 polygons
per second with all processing[8], 600,000
monochrome polygons per second.

Processing:
Z-buffering
Anti-aliasing
Texture mapping
Linear filter (bilinear and trilinear)
Mip-mapping
Gouraud shading
Fillrate in pixels of 30 megasamples per second with
Z-buffer
16.7 million colors (32,768 on screen)

Resolutions: 320 × 240/640 × 480 pixels
GPU Performance: 600 MegaFlops

Memory:
4 MBytes RDRAM
System Bandwidth @562.5 MB/sec
Latency of 640 nanoseconds

Sound:
16-bit stereo
100 Linear PCM channels (maximum 16-24 high
quality). Each channel occupies an entire CPU cycle
Sampling frequency at 48.0 kHz
Supported formats: MIDI, MP3, ADPCM and Tracker

Storage Media:
Electronic cartridges from 4 to 64 MBytes
Controller with analogue stick, vibration function and
input for memory card (Controller Pak)

Input/Output:
4 ports per controller
Expansion Pak Port

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 9 of 86

HARDWARE

Transfer Pak: is an accessory that inserted in the controller
allows you to transfer game data between the Nintendo
64 and the Game Boy, the Nintendo portable console.
Actually, this accessory had only one purpose, namely to
transfer the images captured with the Game Boy Camera
to the Nintendo 64 but was later used in Pokémon Stadium
games to pass data from the Game Boy to the Nintendo 64.

The Nintendo 64 can count on a very large stock park with
several exclusive Nintendos that were the real engine of
the CONSOLE and that allowed you not to fall prey to the
overwhelming SONY (which prevailed at that time).

The bad notes that didn't allow Nintendo to overrank his
rival Sony? The inaccessible price of cartridges, the policy
of never lowering the prices of older stocks and the lack
of some third-party stocks that landed in Sony (Final
Fanasy 7 was a real Killer Application for Sony, ndR).

This does not detract from the fact that there were many
remarkable games for this console and below, since we
are at Christmas you will find the list of the 5 basics for
this console.

CORE TITLES

MARIO 64 - Mario's first 3D adventure and perhaps one
of the most loved adventures by players. He fights the
palm with Super Mario World of the best Mario ever. A very
big game full of secrets. Absolutely worth a try.

Mario Kart 64 - You will find the review in this issue ;).

The Legend of Zelda: Ocarina of Time/Majora Mask - Two
different JRPGs in style but beautiful! The 3D experience
of the Nintendo saga is wonderful. Maybe the highest
gameplay peaks in the series.

Goldeneye - FPS based on 007 series. It was revolutionary.
The title developed by Rare, sold more than 8 million
copies attesting to being the best-selling third party title
on Nintendo 64, but it was the fully explorable three-
dimensional levels and multiple goals to complete freely
that conveyed a feeling of immersiveness never experienced
before in a video game.

Perfect Dark - Another FPS spiritual sequel to Goldeneye.
It takes what's best in the Rare game, expanding it and
adding an incredible plot. Graphically beautiful at the time.

Mario 64

The Legend of Zelda: Ocarina of Time

The Legend of Zelda: Majora Mask

Perfect Dark

Page 10 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

HARDWARE

0. Introduction
The UNO2IEC HOST is a low-cost project, and therefore
somewhat limited, designed to simulate the presence of
a 1541 drive connected to all 8-bit Commodore computers
equipped with a 6-pin DIN serial port. Initially the CBM-
1541 floppy drive was designed to be a worthy companion
to the C64, the best-selling computer in Commodore
history. At first it was a "single-sided" Floppy Disk Drive
(it means that it only uses one side of the floppy at a time)
with 170KB of space on 5¼" disks. Not so different from
what was on the market at the time; the problem was that
it had no real interface. It was connected through the
serial (IEC) port of the C64, which used an I/O controller
(the integrated MOS 6522) that was fast enough on its
own, even if it had some bugs when trying to increase
performance. But to make matters worse, since the project
was well behind the launch of the C64, Commodore boss
Jack Tramiel and his marketing department decided that
the 1541 had to be backwards compatible with the VIC-
20. This forced Robert Russell (the design engineer) to
reduce the speed even more than planned. His 1541 drive,
initially designed to be used with a high-performance
serial line MOS 6526, might have been the fastest of its
era, but it turned out to be among the slowest, if compared
to the 8-bit competitors of the 80s. It took more than two
minutes to load 64KB of data into memory, which was
unconceivable. But the story didn't end that way. In fact,
as many people know, the CBM-1541 is basically a complete
computer because it has a 6502 CPU, dedicated ROM and
a little RAM, therefore only the video chip is missing! So,
over time, some programmers used the disk drive and its
hardware as a co-processor, entrusting it with some
computing tasks or turbo-loader management for their
programs or demos!

1. Hardware implementation
Let's get straight to the point. The idea is to connect an
Arduino UNO (or NANO) board to a C64 - later we will see
that the compatibility of any 8-bit Commodore with a
standard serial port is total - through the IEC interface to
simulate the presence of a 1541 disk drive. The UNO2IEC
project I refer to is Lars Wadefalk's [R1] which I discovered
recently although it dates back to 2013. Divided into three
phases, the project requires the assembly of a cable, the
compilation of a program that will act as a "disk image

server" and the preparation of an Arduino board as a host
between the PC and the Commodore. As said, the same
project works on C16/Plus4, VIC-20, C64 and C128 and
can also be used with a FileBrowser that accepts SD2IEC
commands, whereas compatibility with FastLoader or
JiffyDOS cartridges has not been implemented yet.
Let's start with the list of components needed to build the
cable:

- A piece of 5-wire cable
- 1 DIN 6-pin male connector
- 1 Arduino UNO board (or NANO, less expensive)
Assembling the cable is quite simple: the IEC connector
has 3 signals we need (CLK, ATN, DATA) and an optional
one (RESET). These signals can be connected to any digital
pin on the Arduino. Just note them down and then modify
them appropriately in the server program interface. In my

UNO2IEC HOST interface cable
A simple Arduino UNO-based interface for connecting 8-bit Commodores to your PC

by David La Monaca

Fig. 1 - The components to build the cable

Fig. 2 - The wires soldered on the Arduino UNO board

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 11 of 86

HARDWARE

case, digital pins 6, 5, 4 and 3 were used, for the sake of
simplicity.

As far as programming the Arduino board is concerned,
it is necessary to have the Arduino build environment
available (download it from www.arduino.cc). It's all very
simple, just follow the excellent "Getting Started" guide
on the [R3] site.
Unzip the project from [R2] into a folder on your system
and look at the folder named "uno2iec" which contains

the sources needed to compile and upload the necessary
firmware to the Arduino board. Open the folder and double
click on the file "uno2iec.ino": the file will open in the
Arduino build environment. Then just press CTRL+U to
start the compilation and automatic upload to the board
previously connected to the PC through the mini-USB port.

2. Software installation
The UNO2IEC HOST control program is an open-source
software [R2] that can be compiled for the major platforms:
MS Windows (from XP to W10), Mac OS X, Linux and RPI.
The package for Windows is already available in binary
version [R4]. For the other platforms the sources can be
compiled, taking care to include the Qt graphic libraries
needed to manage the visual interface of the program.
The UNO2IEC HOST software is the tool with which we
interface our 8-bit Commodore computer with the PC
through the use of a USB port (USB 2.0 and 3.0 ports are
supported). The program allows us to select the D64 disk
image we want to use to load and save programmes, play
games and generally transfer data to and from our beloved

Commodore. Once the disk image is selected, it's possible
to load applications and programs inside the D64/T64
files using the standard commands (LOAD, LIST, RUN,
DLOAD, DIRECTORY, etc.) provided by the different BASIC
implementations on the 8-bit Commodore machines.
The actual installation of the "server software" is as simple
as can be. For Windows, just unzip the zip package to a
folder of your choice and run the executable "uno2iec.exe".
There is nothing else to do. The same applies for other
systems: once compiled with the Qt libraries, for OS X you
will find a file "uno2iec.app" and for Linux an executable
"uno2iec" in the main folder of the compressed package,
no installation procedure required).

3. COM port configuration
Before using the UNO2IEC cable it is necessary to configure
the USB serial port to which the cable is physically
connected. And before configuring it you need to... find
it! Nothing complicated, though. Just go to your OS device
panel and read the port name. For Windows just open the
device configuration and find out which COM port the
operating system has assigned to the C64 communication
cable. Specifically just open the Control Panel (Start >
Control Panel) and then select Device Manager > Ports
(COM and LPT). At this point in the list you will see the
serial port reserved by the operating system, e.g. USB-
SERIAL CM340 (COM5).

In your case, a different COM port may be assigned (COM6,
COM7, COM9, etc.) depending on the configuration of the
PC you are using. Mark down the COM port that Windows
has selected for you and proceed to configure the UNO2IEC
software.

4. UNO2IEC software configuration
Ok, now launch the software and set the basic operating

Fig. 3 - UNO2IEC cable finished and ready for use

Fig. 4 - Compiling and uploading code to Arduino

Page 12 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

HARDWARE

parameters. Once the program is open, select the display
interface from those available. By default the theme is
Commodore 64, but also VIC-20, C128 (also 80 columns)
and PLUS/4 are available. From the Main menu select
Directory Listing Theme > Machine > Vic-20 | C64 | C128
(80 col) | Plus4. This setting is nothing else than a way
to set the theme of the software control window when
using D64 files. The control window will display the contents
of the virtual disk that is 'mounted', i.e. selected.
Main > Directory Listing Theme > Machine > C64 (default)
Let us now configure the communication port settings
that we have found in the Device Manager of the Control
Panel. Select Main > Settings (Ctrl+O). Set the COM Port
according to what we have found (in our case COM5) and
leave the Serial Speed at 57600 bit/sec for now.
In the next line we select the following parameters:
Device Number: 8 | 9 | 10... [4-30] - corresponds to the
ID of the usable drive
Reset Pin (optional): 6 - not supported by all Commodore
machines

Clock Pin: 5, ATN Pin: 4, Data Pin: 3
All these parameters may already be in place, but if so,
modify them as above. Basically we tell the UNO2IEC
software how the pins of the Arduino UNO board on our

cable are configured, precisely by function (reset pin,
clock, data pin, etc.).
Then we choose the folder that contains the D64, T64,
PRG, etc. files on our system. Basically the program needs
to know where your collection of programs and games for
your system is located. E.g. Folder for D64/T64 Collection:
C:\TEMP\RETROGAMES\C64

5. Ordinary Use
Once everything is confirmed with the OK button, the left
side of the main UNO2IEC software window will show the
list of files (virtual D64 floppy disks, T64 tapes, individual

PRG programs, etc.).

To mount a D64 or T64 file just select the file with a double
click or press the Mount Selected Image button. The
directory of the selected image file will appear in the control
window at the top right. At this point you can switch to
the computer keyboard and type in the commands to load
the programs, exactly as you would do with a 1541 drive
connected to the machine. So, for example, to load the
directory of the virtual diskette type: LOAD"$",8 and press
Return. A simple LIST followed by Return will display the
list of programs. Obviously the drive ID depends on what
you have selected in the UNO2IEC program settings. To

Fig. 5 - COM port detection in Windows

Fig. 6 - The UNO2IEC Host program in action

Fig. 7 - Communication and pin settings for the
Arduino board and other parameters

Fig. 8 - Selecting and mounting an image file

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 13 of 86

HARDWARE

load a program use LOAD "*",8 or LOAD "*",8,1 followed
by Return. Of course, the command syntax for the 1541
drive applies exactly as if you had a physical drive connected
to the serial port of your Commodore. In case you use
computers with advanced serial drive commands (like
C16, Plus/4 and C128), these are fully supported.

Also in case of T64 file mounts, just issue the LOAD "*",8
command to load the program contained in the tape image.
If you have ready-made PRG files instead, you must select
the Windows folder that contains them and then switch
to the 8-bit computer keyboard and load them with LOAD
"programname",8. Remember that using the asterisk
character means loading the last file that the computer
had previously loaded. Obviously, if the computer has just
been turned on or reset, LOAD "*",8 will load the first
program in the directory of the mounted floppy disk. For
the record, the correct command to make sure you load
the first program in the disk image is LOAD":*",8 (i.e.,
adding the colon character before the asterisk).

Of course, the loading or saving speed is similar to that
of a physical drive connected to the serial port or other
SD2IEC interfaces, so we can expect nothing different.
During the loading or saving phases, a handy control bar
will help us to understand where we are, while also giving
us an idea of the current transfer rate. The transfer rate
can be increased by adjusting the Serial Speed parameter
under Main > Settings, but it's hard to set a higher speed
because of the 2KB of RAM on the Arduino (512 bytes of
which are used as a data buffer to load the disk sectors).
Even loading the PRG version of JiffyDOS before the
necessary loads or inserting a FastLoader cartridge on
our Commodore does not give better results in transfer
rate, although the project developer [R1] and other users
are still testing to improve transfer rate.

A useful feature of the program is the ability to reset the
Arduino board, in case of application or PCB freezing. If
we are using a C64 where the serial port supports the
reset pin (early models had this pin assignment, the C64c
does not), then our C64 will be reset as well: useful when
we want to switch between games or D64 images.

6. Conclusions
Before the advent of USB technology, the connection
interfaces between Commodore computers and PCs with
serial and parallel ports represented a convenient and
cheap solution (e.g. 64HDD, XA/XE cables, XUM 1541).
Nowadays the UNO2IEC interface is probably not the
easiest and most straightforward way to use "modern"

mass storage on old Commodore computers, but it is
certainly one of the cheapest, if not the cheapest ever.
The material to build one is really basic, easy to find and
inexpensive. Building the cable and 3D printing a box to
protect the Arduino PCB can cost between 8 and 12 euros,
including the case. Of course the basic performance is
more or less the same as an original 1541 drive or one of
the many SD2IEC interfaces on the market, but, avoiding
the comparison with more powerful and elaborate interfaces
like the 1541 Ultimate II+ or the Pi1541 (which guarantee
a compatibility level with the original drive around 99%),
for beginners or for those who do not want to spend money
on an original drive and get tangled up with floppy disks,
cleaning and misalignment of the heads, UNO2IEC HOST
is undoubtedly a more than effective solution.

A special (and mandatory) thank you goes to Carlo
Piacentini, well known in the Italian retrocomputing scene,
with whom I have actively collaborated for this little project
and who has made for me (and for himself) some samples
of UNO2IEC cables of excellent workmanship, finding also
the time to make a comfortable 3D printed protective case.
I would also like to thank Emmanuel Barraud (aka Klyde)
for his support and for having also built some UNO2IEC
HOST interfaces for himself and for some retro-commodore
friends.

References
R1 - The author of the project: https://github.com/Larswad
R2 - The source package of the project: https://github.com/
Larswad/uno2iec/releases
R3 - The Arduino compiler: https://www.arduino.cc/en/
Main/Software

Fig. 9 - The UNO2IEC cable with its protective case

Page 14 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

HARDWARE

R4 - The UNO2IEC HOST program for Windows: https://
www.retromagazine.net/download/uno2iec/uno2iec_host.zip
R5 - The UNO2IEC HOST program for Mac OS X: https://
www.retromagazine.net/download/uno2iec/uno2iec_osx.zip

Compiling the Uno2IEC Host software

The software part of the solution is developed in C with
a QT graphical interface and it is available for
Windows, OS X, Linux and Raspberry PI. Compiling the
software is not complicated for any platform, except
perhaps for Windows, for which a ton of programs
must be downloaded including the graphic libraries,
the C compiler and a suitable IDE. To make life even
easier for all our interested readers, we have provided
a Windows ready-made executable file with its static
QT library. For Mac OS X, Linux and RPI systems,
however, you can follow these quick guides.

Mac OS X
For the beginners, the OS X kernel is based on BSD,
more precisely on a kernel called Darwin, which is free
and also periodically updated and modified by an
active community. Since it is a near-standard BSD, a
group of programmers ported/created the BSD
package manager for OS X; the project is called Brew
and is used like Apt/Yum on BSD and Linux/Debian or
Linux/CentOS distributions. We will use Brew to install
the Qt5 libraries and then proceed to compile the
project. Installing Brew and Qt5 is relatively
straightforward but XCode is also required to be
picked up and installed from the AppStore.

Once everything is set up correctly, download the
"uno2iec-0.5.0.zip" package from [R2], unzip the
contents of this file and a "uno2iec_src" folder will be
created. Open a terminal, access the created folder
and type the following commands:

$ brew install qt5
$ qmake "CONFIG+=release staticlib".
$ make

After several minutes and if all goes well, a new folder
called "release" will be created. Inside this folder you'll
find the executable "uno2iec.app", just copy it into the
Applications folder of your Mac and run it.

As you can see, compiling under OS X is fairly
straightforward but the whole process often depends
heavily on your system configuration. I have therefore

enclosed a binary version of the app already compiled
under my VM Mojave [R5]. Download the file
"uno2iec_osx.zip" and open it, placing the folder
"uno2iec_osx" somewhere. A double click on the file
uno2iec_host,app will start the host program. From
the main menu, choose "RP2IEC > Preferences" to set
the interface parameters. If the program does not
start, make sure you have installed the Qt5 library and
add the command:

$ ln s /usr/local/opt/qt5 /usr/local/
opt/qt55

This command is used to overcome a path problem in
storing the Qt5 graphics library in the system, which is
essential for the program to function correctly.

Linux / Raspberry PI
For Linux users things get even simpler! Using one of
the Debian-based distributions that offer "apt" as a
package manager (you can use any distro, as long as
you know what you're doing), we just have to install
Qt5 and the development libraries and then proceed
with the compilation. In my case I used a LUbuntu
20.04 distribution, for which it was necessary to force
the installation of the QtSerialPort module. The
"qmake" command was also missing, but a "sudo apt
install qtchooser" was enough to fix it.

Download the "uno2iec_src.zip" package from the
[R2] site - specifically version 0.5.0.0 - and unzip the
contents of this file into a directory in your home
directory. A "uno2iec_src" folder will be created. Now
open a terminal, access the newly created folder and
type the following commands:

$ sudo apt install qt5default
$ sudo apt install libqtSerialport5
libqtSerialport5dev
$ qmake "CONFIG+=release staticlib".
$ make

As with OS X, a new folder called "release" will be
created. Inside this folder will be the executable
"rpi2iec". Just rename it and copy it wherever you
want on your Linux (e.g. /usr/bin) and you will have
the host program ready to use.

The compilation process for Raspberry PI (all
versions) is similar to the above. We just recommend
using the Raspbian distribution.

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 15 of 86

HARDWARE

As this magazine testifies very well, our beloved retro-
computers are experiencing a second (or perhaps third)
youth. One of the reasons is probably that none of them
used moving parts that could have suffered a mechanical
failure, so they managed to resist more or less unharmed
over time. However, all their storage peripherals had some
failure, so in recent years many manufacturers have explored
ways to make good use of our old companions again by
means of state-of-the-art storage and network navigation
peripherals.

The good thing about such devices (such as the Ultimate
II cartridge, just to name one) is that they allow you to
get your hands on old computers, but their capacitors and
other components are still aging and will, one day, break.
Thanks to many "visionaries", however, such as the guys
of MEGA (Museum of Electronic Games and Art), a brand
new 8-bit project was launched: building a computer based
on the C65, working about 50 times faster than a C64
while remaining highly compatible. C65 design, mechanical
keyboard, HD output, SD card holder, Ethernet, extended
memory and other features will soon increase our fun
without spoiling the 8-bit feel.

The MEGA65 is a completely open-source project and,
unlike other FPGA-based computers, its implementation

can be reviewed, modified and improved. This FPGA
implementation is based on a reproduction of the large
scale compatibility of the old MOS 6502 microchip, including
illegal OpCode. This means that MEGA65 is designed to
offer compatibility with both C64 and C65 and, as it is
open-source, its compatibility will continue to improve
over time.

Unlike other products out there, this is not meant to make
us float in nostalgia: although this is a very likely and very
desirable result, you can really go back to programming
as in the old days thanks to a large library of easy-to-learn
programming languages, drawing programs and various
tools focused on supporting our creativity.

The project was announced in 2015 and was due to be
completed within a few months. To date, a release date
has not yet been announced, but developers are really
trying their best and the results are now tangible. In
addition, a portable version of the MEGA65 is under
development and its features are simply unique: a dual
4G (and upgradeable 5G) mobile phone with unprecedented
battery life (about 1000 hours standby), built-in 2W stereo
speakers and 1 second shorter start-up time.

An introduction to MEGA65
by Gianluca Girelli

Page 16 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

HARDWARE

Like any project of this type, which relies heavily on direct
support from fans, this too had a moment of pause, just
as the relaunch campaign for the purchase of injection
molding equipment to build the shells for the MEGA65
was launched. Such a machine is very expensive and even
though the community donated over €20K, and a goal of
66K seemed almost unattainable, until... well, until the
day that over €40K was raised on a weekend!

After the success of the fundraising campaign, development
kits became a reality within a few months and were now
sent to developers. Courtesy of Stefan Vogt, creator of
cutting-edge multi-platform textual adventures, we now
have the opportunity to take a closer look at this beauty.

Images in this article show the bottom plate and drive,
motherboard and its body, with the drive mounted, along
with the details of the board and keyboard.
The assembled devkit seems really magnificent, and
although some people still think that all this is just an
expensive toy for geeks and nerds (which I am proud of)
let me point out that Tristam Island, Hugo Labrande's last
textual adventure released just a few weeks ago, already
runs on a MEGA65 and so it will be for Hibernated2 by the
aforementioned Stefan Vogt. I can't close this article
without thanking Paul Gardner-Stephen and everyone else
at MEGA65.org for making this possible.

An illegal opcode, also called an undocumented
instruction, is an instruction to a CPU that is not
mentioned in any official documentation released
by the CPU's designer or manufacturer, which
nevertheless has an effect. Illegal opcodes were
common on older CPUs designed during the
1970s, such as the MOS Technology 6502, Intel
8086, and the Zilog Z80. On these older
processors, many exist as a side effect of the
wiring of transistors in the CPU, and usually
combine functions of the CPU that were not
intended to be combined. On old and modern
processors, there are also instructions
intentionally included in the processor by the
manufacturer, but that are not documented in any
official specification.
https://en.wikipedia.org/wiki/Illegal_opcode

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 17 of 86

HARDWARE

In this article we will discover the VIC MOS, processor
responsible for managing the image of Commodore VIC-
20 8-bit computers. VIC stands for Video Interface Chip,
is such an important chip for VIC-20 that it also gave it
its name but, on the other hand, its origins are not common
to it: in fact, VIC is a chip born before the computer itself.

Origins
Let's go back to 1976. MOS Technology is a small integrated
manufacturer founded in the late 1960s by Allen-Bradley
as a secondary supplier of Texas Instruments chips. It
came to know a certain fame in 1975 when, thanks to the
work of several former designers of the Motorola 6800,
including Chuck Peddle, who left the company and were
hired en bloc by MOS Technology, it marketed the 6502,
an economical CPU that immediately enjoyed enormous
commercial success. Motorola, however, denounces MOS
because the development of 6502 was in his opinion
carried out with knowledge and technologies “exported”
by Motorola from its former employees. Allen-Bradley,
given the bad news (a Motorola lawsuit could prove very
expensive) and also given the decline in the turnover of
the computer chip industry during that period, sells its
shares to the company's executives and abandons MOS
Technology. At the beginning of 1976 MOS settled and
paid a one-time fee to Motorola to close the case and
agreed to take the licences of the peripheral chips necessary
for the operation of 6502.

Despite the good sales of 6502, finances of MOS are in
trouble at that time. At the end of 1976, therefore, MOS
accepts the purchase proposal made by Commodore, who
at that time is fighting a price war with the other
manufacturers of electronic calculators and seeks a chip

manufacturer to become independent of its supplier/
commercial rival Texas Instruments.

Commodore, however, tries to expand its market by
diversifying its offer and, in this perspective, is convinced
by Peddle that calculators have now made their time and
that home computers will be the future. Peddle proposes
a system based on its 6502 development kit called KIM-
1 that MOS offered to 6502 customers: the project is
started and the final result is the PET, which Commodore
launched in 1977. This computer is similar to a terminal,
not offering the possibility of managing raster graphics
but only having a set of semi-graphic characters with
which you can draw program interfaces.

Research continues in MOS Technology. Al Charpentier
has in the meantime created a graphics chip called Video
Interface Chip, labelled 6560, intended to equip cheap
CRT systems such as computer terminals, biomedical
systems, or home gaming consoles, another sector of
consumer electronics that is taking over at that time. The
chip, however, is unsuccessful: MOS fails to place it with
any of its customers. At the same time trying to improve
the PET, Chuck Peddle and Bill Seiler designed a new
system called TOI (The Other Intellect), an office computer
with a 6564 graphics chip capable of displaying 80 columns.

TOI remains at the prototype level because 6564 requires
fast but very expensive (at the time) static RAM (SRAM)
due to its limited access times to video memory; in addition,
the 80 columns require a special screen to be displayed.
Both of these factors would greatly increase its selling
price and it was decided not to continue its development.
At the same time, a new PET model capable of generating

The MOS VIC video chip
by Leonardo Miliani

Page 18 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

HARDWARE

color images is also being developed thanks to another
graphics chip 6562 which, however, has the same economic
problems because it also needs SRAM memories. Both
projects are set aside.

Towards the end of the 70s, a young engineer, Robert
Yannes, was hired to make a cheap computer prototype
called MicroPET at home. Together with Al Charpentier
and Charles Winterble, Yannes presents this prototype to
Jack Tramiel, head of Commodore, who immediately
authorizes its development. The Vixen project, which will
lead to VIC-20, takes shape. For graphics and sound it
was decided to use the best of what had been developed
until then: the original 6560 was taken to which were
added the most efficient sound generator of 6562 and
color management of 6564. The new VIC was born.

Technical specifications
VIC is a chip used for both image and sound generation.
For its programming it uses 16 registers mapped to
memory, then seen by CPU and computer as normal
memory cells, at the addresses $9000-$900F.

VIC has 14 addressing lines and can therefore access up
to a maximum of 16 KB of video memory, which it divides
into 3 main areas: video memory, color memory and
character memory. The latter, in the case of VIC-20, is on
ROM because the character map is predefined and is
contained in 4 KB where four distinct maps are saved: 2
normal maps, one with uppercase and semi-graphic
characters and one with mixed uppercase/lowercase and
semi-graphic characters, as well as the inverted versions
(i.e. in “reverse”) of both.

At the screen level, VIC manages an image whose dimensions
can be set through its registers up to a maximum of
248x232 pixels in NTSC systems and 256x280 pixels in
PAL systems, even if VIC-20 presets the image to 176x184
pixels, corresponding to 22 characters in width and 23
characters in height, respectively, for a total of 506 cells
of 8x8 pixels.

This reduced horizontal resolution, due to the ratio of the
video signal of 4:3, translates into pixels with a slightly
rectangular appearance, being larger in width than in
height (as shown in Figure 1). The chip does not allow
bitmap graphics: this means that it cannot address the
individual pixels of the image but only use the characters
as graphics elements.

To create games with elaborate graphics, however, VIC

allows you to use custom maps, thus giving the programmer
the possibility to create their own graphic elements.

The video memory corresponds to as many bytes as those
set for the current image: in the case of VIC-20, which
reserves 512 bytes for video memory, 506 bytes are used
due to the screen resolution of 22x23 characters. Each
byte contains the character code to display, whose array
of pixels is retrieved from the character memory, going to
“draw” in the currently active map. Such a map may be
either in ROM (for the default characters) or on RAM (if
you are using a redefined map).

The color of the individual pixels is contained in the color
memory and is stored in nibble form (4 bits), where each
nibble indicates the color code to be used. Colors are in
all 16 but the chip has some limitations. The main colors
of the fonts and border of the image can only be 8, chosen
from the following: black, white, red, cyan, purple, green,
blue and yellow. For the background there are also 8 other
so-called auxiliary colours to choose from: orange, light
orange, pink, light cyan, light purple, light green, light
blue and light yellow.

VIC can operate in two modes, with “high resolution” or
“multicolored” characters. The first is the standard mode:
the characters are 8x8 pixels wide and each bit in memory
corresponds to 1 pixel on the screen. The second handles
characters with a double width of 16x8 bits where 2 bits
in memory correspond to 1 pixel on the screen and is
activated by setting the 4th bit of the color nibble. Up to
4 different colors can be used in this mode, and each color
is selected from the bit pair value.

This pair does not directly indicate the color but from
where to retrieve it between: the primary color, the border
color, the background color, the auxiliary color. Note the
chip has 4 pins intended exclusively for direct connection

Fig. 1 - Images generated by the VIC appear with
rectangular pixels

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 19 of 86

HARDWARE

with the color memory for direct recovery of the color
nibble. Since multicolor graphics appear at half resolution
due to the fact that it takes 2 bits to represent a pixel (see
figure 2) this mode has not been widely used in games.

Map of the memory
Although the video chip sees the memory dedicated to it
as a single contiguous block of 16 KB, in reality it is
addressed in a rather particular way in the computer.
Character map memory, which occupies 4 KB, is located
in the $8000 to $8FFF area. Since the characters that can
be managed by VIC are 128 and each character is 8x8 bit
wide, it takes 4 areas of 1024 bytes each to contain map
data integrated into VIC-20. As mentioned above, from
$9000 to $900F the 16 registers that manage VIC in all
its aspects are mapped: color settings, vertical and
horizontal resolution, sound generation, etc...

Video memory is mobile. In a VIC-20 with no RAM expansion
installed, it occupies cells from $1E00 to $1FFF (512
bytes). If there is an expansion then the video memory is
moved to block $1000-$11FF: this is because the memory
dedicated to programs must always be contained in a
contiguous block of RAM.

The color memory is also placed in an address space that
varies depending on whether the computer mounts an
expansion or not: in the first case it is placed in block
$9400- $95FF, while in the second case in block $9600-
 $97FF.

Strengths and weaknesses
As mentioned at the beginning, VIC does not only manage
the video image. To contain the final price of the computer,
its designers have included several features within it. The
chip is also responsible for generating sound: it is equipped
with 3 square wave audio channels and a fourth channel
for white noise. Volume control is, however, only possible
globally.

VIC embeds two digital/analog converters that allow it to
read the position of the X and Y axes of a paddle. It can
also handle an optical pen. Direct memory access (DMA)
is also available to read and write to RAM independently.

In addition to bitmap graphics, the chip also lacks DRAM
(Dynamic RAM) refresh circuitry, as it is designed to work
with SRAMs. DRAMs are a type of memory widely used
between the late 1970s and the early 1980s because they
are cheaper than faster but more expensive SRAMs: the
latter, however, unlike DRAMs, do not need continuous

access at regular intervals (the so-called "refresh”) in
order not to lose the stored data.

VIC does not support sprites, present on other contemporary
graphics chips such as Atari TIA (Atari 2600) and the
TMS9918A (the latter was the subject of our previous
paper), nor an interrupt raster. However, it has a log that
contains the row currently drawn by the video brush.

Inheritance
Despite its limitations, VIC-20 was very successful,
becoming the first computer to be sold in more than
1,000,000 units and surpassing the target of 2.5 million
copies marketed.

And part of the credit goes mainly to its VIC chip, thanks
to which the computer offered at a more than affordable
price graphic and sound capabilities of some importance.

Work done on VIC was then put to good use. From it came
the two chips responsible for the success of the best-
selling computer ever, the C64: VIC-II and SID are in fact
“descendants” of that first, winning, project.

Happy New Year to everyone and to the next article.

Fig. 2 - Example of multicolor graphics where two
characters are placed side by side to create an object.

Note the "block" pixels with horizontal resolution
halved.

Page 20 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

BASIC ON THE
ZX SPECTRUM
(Alberto Apostolo)

Anja de Weerd, reader of RMW ENG,
added a comment (Fig.1) to the
article on the conversion of
programs from ZX81 to Spectrum,
published in RMW #26-IT / RMW
#04-EN, concerning a small game
for ZX Spectrum (RMW #26-IT Page
7 Fig.7, RMW #04-EN Page 9 Fig.7).
Thanking for the compliments, I
accepted the directions and I
reported them in the program in
Fig.3. At line 75, the number of
"scrolls" performed is equal to the
number of quotes (SymbolShift-7)
minus 1.

Notice: those who want to know
more, can subscribe to the
Facebook group BASIC ON THE ZX
SPECTRUM (Fig. 2) where the
comment appeared.

PRINT HORRORS
In RMW #04-EN (page 9), released
after Halloween, we missed a
"horror" of printing.
The title of a paragraph had to be
highlighted in bold (Fig.4).
We apologize with the readers.

A "TRICK"
FOR ONE-LINERS
ON ZX SPECTRUM
(Alberto Apostolo)

If you type a program line too long,
with lots of instructions separated

by ":", the ZX Spectrum "rebels"
slowing down the cursor even
more.

Then you should start from the
bottom, entering the instructions in
reverse (the cursor, always at the

beginning of the line, will not be
slowed down). To avoid confusion,
first prepare a list of instructions to
type on your beloved ZX.

Fig. 1

Fig. 2

Flash News!

Fig. 3

Fig. 4

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 21 of 86

SOFTWARE

Introduction
Like many of RMW readers, I also love collecting what are
today called “retrocomputers”. The main reason I do this
is to experience the pure contact between hardware and
software: I like to go into the meanders of registers and
memory locations, and then see the machine obeying
every single bit of code I’m sending to it.

This is how, a few years ago, during a relatively quiet
period, I started programming a small game for Commodore
64, a clone of the old and famous Snake which has become
popular again with the versions seen on the first mobile
phones with matrix screen. With very poor imagination, I
decided to call it “Snake6502”, honouring the famous
processor that sits at the heart of millions of retrocomputers.

After trying it for a long time on VICE emulator, then on
the physical machine using tape and .prg format, the
natural next step was to bring it on cartridge format. And
to do so, I had to face new challenges that I decided to
share with the readers of this magazine.

Space
The Commodore 64 is designed to use “standard” 8KiB
cartridges, although it can be used up to 16KiB and, with
the addition of dedicated hardware, even beyond. My habit
has always been trying to save memory spac as much as
I can. In this project certainly I could do more, but with
4KB of SID, 2KB of custom characters, mazes and code,
it is still early to fill in the 8KB available for the basic
configuration.

The memory of each program can be divided into sections
and conceptually three of them are recognized: text, data

and bss. The text section contains the actual code that
defines the program logic, the operations to be performed,
the decisions to be made, the jumps to the subroutines
(and the subroutines themselves) and so on; the data
section contains data that has already been initialized,
and possibly static, such as character maps, mazes, or
lookup tables (i.e. a table containing pre-calculated values,
to streamline runtime calculations); the bss section finally
contains uninitialized data, and this is an area that is
populated during program execution.

Knowing these basics, essential for those who try to
program in assembly, you can immediately understand
that certain sections of our program, such as the text and
the data, which contain the program itself and the labyrinths,
must necessarily be contained in our ROM, while the bss,
which instead will contain, at runtime, the information on
the status of the game, has no reason to occupy space in
our limited ROM. Among other things, the content of ROM
certainly cannot be changed during the execution of the
game, unlike the .prg which is instead copied to RAM when
loaded, so wasting bss space to put it on ROM makes no sense.

So, for example, the variables for the score, for locating
the head and tail of the snake, and so on, will occupy no
space (if put in the right section) other than a small
reference that the assembler will keep in mind for us on
the development machine.

The following table shows the memory map of the game
before starting the conversion: making careful use of the
sections, you can see, for example, how no reference in
the zeropage is allocated in the .prg, and how all the
essential bytes are concentrated in a small memory area
around the address $1000.
Knowing your assembler is essential to organise the code

A Snake's clone for the C64 on cartridge
by Giovan Battista “giomba” Rolandi

Table 1: Memory MapFig. 1: A screenshot of the ganme

Page 22 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

as intelligently as possible. For example, with dasm you
can mark segments initialized with SEG and those not
initialized with SEG.U, maintaining the convenience of
references, as seen in the excerpt:

SEG.U zeropageSegment
org $02

; Generic src/dst copy pointers
srcPointer DS 2
dstPointer DS 2

; Music
SEG SIDSEGMENT
org $1000
INCBIN "music.sid"

; Program
SEG TEXT
lda (srcPointer), and
sta (dstPointer), and

; Lists
SEG.U listSegment
org $ce00
listX DS 256
listY DS 256

As you can see from the memory map, using this precaution
allowed you to keep the program in a small memory region.
Small, but not too much: at this point in fact the program
amounts 8252 bytes, which is still 60 bytes too much to
be able to enter the 8192 byte ROM, not to mention that
you still have to add other bytes of program to manage
the startup from cartridge.

60 bytes too much, however, are tempting, because yes,
the memory map is compact, but only apparently. In fact,
there are several memory locations that were chosen
because they were forced, and that left a few bytes of
empty space here and there.

For example, the BASIC autostart, which is used to start
the game as soon as it is loaded, without the user having
to hit RUN or, worse, some weird SYS, must necessarily
be at the memory location $801, in order to be played
automatically, while the music for SID has been written
so that it can be played only if it is at the location $1000.
Similarly, between SID and Character Map, which must be
at $2000, a handful of bytes left.

How to quantify how much “gruyere” space is actually empty?
Again, the assembler is our best friend to solve this type
of doubt, automatically.

LASTINIT SET .
;
; ... code ...
;
ECHO "file.asm @ ", LASTINIT,"len:",(.
LASTINIT)

With dasm you can divide the program into several files
and insert, at the beginning and end of each of it, two lines
like those shown, so that, during compilation, the space
used by each piece of code is shown.
It turns out that, a hole here and a hole there, this leaves
a hundred bytes of empty space, but difficult to fill: too
little and too fragmented for the character map, enough
for the code (at least at the beginning) but limiting in the
long term, and certainly predisposed to make more
spaghetti-code than necessary.

Although free space is apparently sufficient, it is in fact
almost completely unusable due to fragmentation. But
despite this, I then add the code for starting from cartridge
(see below), and by running a little "knapsack algorithm",
the code is broken and packed in every nook and cranny
of memory, and the size of the program is increased to
just 8190 bytes, that is, with a margin of just 2 bytes of
free memory. It's a (partial) success!

Starting from cartridge
When the Commodore64 starts, it attempts to determine,
through a combination of hardware and software, whether
there is a cartridge inserted into the dedicated expansion port.
From a software point of view, the Kernel checks if, at
address $8004, the string “CBM80” is present in PETSCII,
and, if it finds it, jumps to the address indicated in locations
$8000-$8001 (i.e. the first word of the cartridge).

When the Kernal starts the cartridge, it fails to call the I/
O initialization routines, which are essential to be able to
use video, keyboard, joystick, mass memories, and so on.
As you can see from the code excerpt, therefore, it is
advisable to call them manually.

Before starting the actual program, then, it must be copied
to the original memory locations, because some parts
cannot reside elsewhere (e.g. music for the SID).

SEG CARTRIDGESEGMENT

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 23 of 86

SOFTWARE

org $8000

sUBROUTINE CARTRIDGE
WORD .COLDSTART
WORD .WARMSTART

; CBM80 in PETSCII
; (autostart signature)
BYTES c3, c2, cd, 38, 30

.coldstart:
six
stx $d016
jsr $fda3
jsr $fd50
jsr $fd15
jsr $ff5b
cli

.warmstart:
; copy to original location
jsr copy
; jump to program entry
jmp start

The cartridge is therefore ready and working, but at this
point it is spontaneous to ask: but all that spaghetti code
from before, is it a good thing? And all this work, did it do
any good? The game just enters 8KiB: what if tomorrow
is to be expanded?

RLE Compressor
One of the space-saving techniques is data compression,
which exploits the inherent redundancies of data. Consider,
for example, the labyrinth that the serpent must travel
through: it is made by means of numerous tiles close to
each other, all equal and forming repetitive patterns, such
as vertical and horizontal lines. One of the compression
algorithms that can be used to compress this type of data
is the so-called Run Length Encoding (RLE), and the
underlying concept is rather trivial: why store so many X
tiles all the same, one after the other, when you could
simply store more compact information like “there are N
X tiles in a row”? A sequence like “AAABBB” would then
become “3A3B”. With this simple and trivial observation,
the labyrinth of an entire level, which in memory would
occupy 40x24 = 960 bytes, can be reduced to a few dozen
bytes. For example, in snake6502, the "Training” labyrinth,
after being compressed with RLE, takes just 69 bytes - a
93% memory saving!
However, this type of compression had already been applied

at the Snake6502 level well before thinking about making
the cartridge, so the 8190 bytes are already net of
compression. Basically, I'm always at the starting point.

One problem with RLE compression is that it is too simple
and can only exploit gross, obvious redundancies. As we
have seen, it therefore works very well for maps and mazes,
but it is tremendously ineffective against code or character
maps, which have finer redundancies. Using RLE on code
could actually be highly counterproductive, increasing
the final size of the program rather than decreasing it.

How can this happen? When you compress data, you do
it to save memory, but at the expense of adding new data
structures and a decompression subroutine, which take
up space for things that were not there before: the hope
is that the beneficial effects of compression are large
enough to compensate for the loss due to the addition of
this overhead.

With RLE compression, this compromise would not bring
benefits: a smarter algorithm is therefore needed.

LZ Compressor
The LZ algorithm, named after Lempel and Ziv who designed
it, recognizes not only when a byte repeats, but also when
longer sequences repeat. For example, if RLE cannot
compress the sequence “ABABAB” in any way, LZ recognizes
that "AB” is a substring that repeats 3 times, and can
therefore conceptually store something like “3AB”. In
practice, the algorithm is more complex and there are
different versions.

The basic idea of LZ is to see the data to be compressed
as a stream of bytes, and as you scroll through it, to reuse
the strings you have already encountered by pointing them
back into the stream.

The following image shows a fairly trivial example in which
we see how the previous 6 bytes were compressed into 4
using a special structure (offset;length), where the offset
specifies the position of the original substring.
Clearly this is just one example that needs to be deepened
more rigorously, but before doing so it is good to dwell
on some details.

If the structure (offset;length) has a fixed size, how many
bits can be dedicated to offset and how many to length?
Dedicating many bits to offset would allow retrieving very
distant bit strings spatially, but at the cost of limiting the
length of these, and vice versa, dedicating many bits to

Page 24 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

length would allow retrieving very long strings, but only close.
The number of bits dedicated to offset and length can be
chosen in such a way as to have the best compression
compromise, which of course is different depending on
the data you want to compress, and often also clashes
with the technical limitations of the hardware: therefore,
in essence, it depends on the specific implementation.

The liblzg library implements a fairly simple version of the
LZ algorithm, such that it can be easily carried on modern
embedded systems, but also on somewhat retro computers,
such as the Commodore64. In fact, there is a “mini” version
for the Motorola 68000 processor and, of course, for the
MOS 6502. The library comes with a compression utility,
written in C language, which can be run on any modern
operating system, and which is particularly convenient
for cross-development nowadays.

“liblzg-mini”, in order to allow the best possible compromise
during compression, rather than employing a single
structure (offset;length), employs 4, and can use the most
appropriate one, depending on how far the redundant
string of bytes is or how long it is. Figure 3, in which each
square represents a bit, shows the four structures: near
copy, short copy, medium copy and distant copy, which
are chosen as needed.

Note how, to save as many precious bits as possible, they
do not actually represent directly offset and length as
binary numbers, but a variant thereof. For example, since
offsets 0 to 23=8 can be easily represented by the "near
copy” structure, the "short copy” structure, while having

6 offset bits, does not represent values from 0 to 26=64,
but those from 8 to 64+8=72. Similarly, the 5 bits of
length, which could represent only values from 0 to 25=32,
are used instead to index a lookup table, which contains
a selection of values of common lengths, from 2 to 128.
All details can be found directly in the source code comments.

A final problem that has not been addressed is that of
distinguishing the various data structures. To distinguish
them during decompression, a prefix is applied to them,
called in jargon marker: of course there are 4 types, as
many as there are structures.

All bytes that are not markers or structures are treated as
original, uncompressed bytes that are part of the stream
as they are, and are called literals.
A sample stream of compressed bytes then appears as
such (see Figure 4).

One last problem remains to be solved: what happens if a
marker is equal to a literal? What if the marker was $77
and you wanted to literally represent a $77 byte instead?
In this case, liblzg solves the problem by treating that byte
as a marker, but placing the first byte of the corresponding
structure at the special value $00, which would still be
unusable for other purposes (offset = 0, length = 0).
Using the marker plus a piece of structure, it is also possible
to represent those literals equal to the markers. In these
rare cases, however, a figure that would originally have
been 1 byte large, compressed becomes... 2 bytes! This
is a compromise that we must accept, given the technical
constraints.

Fig. 2: A sequence of bytes before
and after compression with LZ

Fig. 3: The 4 data structures used by liblzgmini

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 25 of 86

SOFTWARE

Using the LZ compressor for the snake6502, the final size
of the program therefore goes from 8190 to just 5614
bytes, that is reduced to 69% of the original! However,
the decompression routine, not exactly trivial, must still
be placed on the cartridge, uncompressed, and takes
about 400 bytes. Despite this, at the end of the day, the
cartridge amounts 6029 bytes, so there are still more than
2KiB free for any future expansion - a great result! Here
we go. Here we go.

Packaging
The game is then first assembled as usual, possibly even
leaving a few empty spaces here and there for reasons of
maintainability and readability – both LZ will take care of
minimizing waste, then it is compressed with lzgmini in
the development environment, becoming a nice compact
snake.pak.lz file. This file is then chained to the decompression
routine, and placed on the cartridge which, as soon as it
is started, will unpack it in memory in the original location,
and will finally allow us to play.
To make the decompression operation more scenic, you
can add a simple $d020 statement to the routine to run
each cycle, to get a few seconds of “loading bars”.

Hardware Cart
Prepared the binary file with all this cinema inside, and
extensively tested on the emulator, it is finally time to
physically transfer it to a cartridge.
The circuit to be created is quite simple, but if – as in the
case of the undersigned – you are not a professional in

the sector, you should rely on some ready-made solution,
for example Versa64Cart.

Versa64Cart is a versatile card that allows you to make 8
and 16KiB cartridges for the Commodore64, both in
standard and ultimax mode. For about 10 Euro you can
have some copies printed at any printed circuit factory,
and for another about 10 Euro you can buy (in abundance)
all the components you need to weld it at home.

Technically all you need is:
- a circuit board;
- an EPROM, or better still a compatible EEPROM 27C64
(8KiB), 27C128 (16KiB), 27C256 (32KiB);
- a 100nF capacitor;
In fact, in order to enjoy the versatility of configuration,
it is also advisable to obtain:
- a “wide” 28-pin DIP socket, practically essential if you
do not want to weld the ROM permanently;
- button, convenient for resetting;
- 5-way DIP switch;
- Resistors (8-10 kΩ), pin headers, and assorted jumpers.

When the Commodore64 is turned on, this determines
the type of cartridge attached via two hardware signals,
EXROM and GAME, active low, i.e. when they are brought
to 0V. In order for the cartridge to actually respond, when
contacted by the Commodore, it is necessary to connect
OE (Output Enable) pin of the ROM to the right ROM enable
signal, which must be chosen between ROML for cartridges
mounted at $8000 and ROMH for those mounted at $E000.
To mount the snake6502 cartridge, which is 8KiB, standard
mode, address $8000, only the EXROM signal (the second
switch of the DIP switch) must be activated and the ROM
OE connected to the ROML signal (jumper J6).

(In the attached image a jumper is used as an alternative
to the DIP switch: all possible configurations are listed in
the detailed manual that can be downloaded online,
together with the circuit diagrams)

EEPROM Programmer
The last problem to deal with before you can actually play
is writing the EPROM.

Although it is not exactly in line with the spirit of the time,

Fig. 4: A sample example of compressed byte stream

Fig. 5: The Versa64Cart with snake6502

Page 26 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

for simplicity it is advisable to use a “modern” EEPROM
(Electrically Erasable Programmable ROM), so that it can
be deleted and reused comfortably in case of errors, and
also to try any new versions.

The EEPROM 28Cxx (i.e. 27Cxx compatible) can be
purchased for a few Euros, while EEPROM programmers
are not very expensive, but, amateurly, it may also be
convenient to use any cheaper microcontroller, such as
the famous Arduino, especially if you already have it, such
as the undersigned. Ben Eater is famous in the amateur
environment for having created a didactic and adaptable
version, so it is best to take inspiration from his work.

A common Arduino Duemilanove/Uno has 20 feet, but to
program the ROM they need more:
13 pins for addresses (213 = 8KiB)
8 pins for data (8 bits = 1 byte)
2 control pins
2 pins for serial communication

The most numerous address pins are fortunately only
needed in output, so they can easily be replaced by a pair
of shift registers, i.e. digital circuits which, after passing
them a string of bits in series, show it in parallel on their
8 pins. The 595 series shift registers can be cascaded,
allowing an arbitrarily large number of output feet to be
obtained.

The firmware for Arduino, expanded, is therefore responsible
for managing the writing of the EEPROM, selecting the
addresses for writing through the shift registers, reading
the contents of the cartridge that is passed to it from the
development computer through the serial port.

Since the feet for the data are directly connected to Arduino,
then, in the end, it is possible to reread the ROM to verify
the integrity of what is written.

The EEPROM programmer pseudocode follows:
/* Writing */

Fig. 6: The homemade EEPROM programmer built with Arduino

Fig. 7: Outline diagram for connecting the EEPROM to
the Arduino Fig. 8: Timing diagram for writing

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 27 of 86

SOFTWARE

address = 0
for address
read from serial
write address on shiftregister (A0A12)
write data on feet (D0D7)
write command (WE) (HIGH → LOW → HIGH)
address
next

/* Reading */
address = 0
for address
write address on shiftregister (A0A12)
output command (OE) (HIGH → LOW → HIGH)
feet read (D0D7)
write data on serial
address
next
At this point all you have to do is mount the EEPROM on
Versa64Cart, insert it into the Commodore64 and… play! ☺

Actually the picture portrays a Commodore 128D, I was
wrong right at the end!

References
- dasm, https://dasm-assembler.github.io/
- EEPROM programmer by Ben Eater, https://github.com/
beneater/eeprom-programmer
- liblzg, https://liblzg.bitsnbites.eu/
- snake6502, https://git.giomba.it/giomba/snake6502
- Versa64Cart, https://github.com/bwack/Versa64Cart
- VICE, https://vice-emu.sourceforge.io/

Fig. 9: Snake6502 running on a Commodore 128D from cartridge (in 64 mode)

Page 28 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

The BASIC language wired into the Sinclair ZX Spectrum
ROM does not have the structured programming constructs
UNTIL, WHILE, IF-THEN-ELSE.

However, you can still write structured programs, taking
advantage of the possibilities offered by BASIC Sinclair.

Those who want to apply the techniques covered in this
article to other BASIC versions should consult their
reference manuals to verify feasibility.

The iterative structures UNTIL and WHILE

The BASIC Sinclair allows the use of conditional expressions
that can return the integer 1 (TRUE) or 0 (FALSE) to be
used in normal arithmetic expressions.

Also it is known that BASIC Sinclair allows you to alter the
values stored in the control variables of a FOR-NEXT loop
within the loop itself.

Other languages do not have this feature (for example,
FORTRAN 77 and DO-CONTINUE loops).

Fig. 1 shows the conversion of structures UNTIL and WHILE
in FOR-NEXT loops of BASIC Sinclair.

Of course, in case of nested structures, it is mandatory to
use control variables with different names in FOR-NEXT loops.

The IF-THEN-ELSE structure

Each respectful "Sinclairist" knows well the arithmetic
expression in Fig.2, often used in ZX Spectrum programming
to calculate the position of characters along the screen
abscissa moved with keys 5 (left) and 8 (right).

It's not the only way to implement IF-THEN-ELSE structure.
For example, you can use the "calculated" GOSUB command
(Fig.3) or, alternatively, use two consecutive FOR-NEXT
loops (Fig.4). Also in Fig.4, note the variable A needed to
"synchronize" the two FOR-NEXT loops.

Also here, in case of nested structures, it is mandatory to
use control variables with different names in FOR-NEXT loops.

A game written in a single line of BASIC

The game shown in Fig. 5 can be rewritten without GOTO
(Fig. 6) and even in a single line of BASIC (Fig. 7) as would
a real "One-Liner" (who can write non-trivial programs in
a single line of code).

Conclusions

It was realized what seemed impossible at first sight
(eliminating the use of GOTO command) due to the possibility
of modifying the control variables of FOR-NEXT loops and
the use of conditional expressions in arithmetic calculation.

Coding without GOTO on the ZX Spectrum
by Alberto Apostolo

Fig. 1

UNTIL condition FOR F = 0 TO 1
 [statements] statements
 F = condition
 NEXT F
WHILE condition FOR F = 1(condition) TO 0
 [statements] statements
 F = (condition)
 NEXT F

LET X = X (INKEY$="5" AND X > 0) + (INKEY$="8" AND X < 29)
Fig. 2

 ... GOSUB 2000
 1000 * (cond)
IF cond ...
 THEN 999 STOP
 statement_1_1 1000 statement_1_1

 statement_1_n ... statement_1_n
 ELSE 1999 RETURN
 statement_2_1 2000 statement_2_1

 statement_2_m ... statement_2_m
END 2999 RETURN

Fig. 3

 REM IF LET A = cond REM THEN FOR F = 1A TO 0
 statement_1_1 ... statement_1_n
 NEXT F REM ELSE FOR F = A TO 0
 statement_2_1 ... statement_2_m
 NEXT F

Fig. 4

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 29 of 86

SOFTWARE

Eliminating GOTO makes it easier to write more compact
programs, which can even be contained in a single line of
code.

Finally, you can do without POKE commands on system
variables pointing to the instructions to be executed
(NEWPPC 23618/23619 and NSPPC 23620).

Appendix

In 1985, I also participated in a "One-Line" contest
organized by the Italian magazine "Sinclair
Computer" [SC85].

There were no prizes to be won but only the satisfaction
of seeing their own program published (Fig.8)

Fig. 5

Fig.6 Fig.7

Fig.8

Bibliography

[Bon83] R.Bonelli, "Alla scoperta dello ZX Spectrum",
 Gruppo Editoriale Jackson, 1983.

[SC85] AA.VV., "in una riga", Sinclair Computer n.15,
 Jul-Aug 1985, Pag.36.
 https://archive.org/details/Sinclair-Computer-15

https://archive.org/details/Sinclair-Computer-15

Page 30 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

Searching the Internet for "sinclair
computer logo" you will find many
beautiful images (official and
unofficial) of the Sinclair logo that
can be downloaded and printed on
stickers to decorate our devices or
self-built boards containers. But in
addition to pictures, it would be
nice to print stickers using Sinclair
fonts.

Fonts used on Sinclair computers
can be downloaded free of charge
in TrueType format from dafont.com
(Fig. 1, [DF20a], [DF20b]). Other
sites allow you to download similar
versions but not for free.

The "Sinclair logo font" that makes
up the wording "sinclair" on the
casing is located in [FS20] (Fig.2)
but to download it you must
register. However, it is noted that
some letters ("o", "g", "l", "s","z")
are confused with the numbers
0,9,1,5,2.

A similar problem is also found in
[BA20] (Fig.3) where the letters "v"
and "x" could be better treated
graphically and the letters "o",
"s","z" are confused with 0,5,2
respectively.

Another noteworthy version is the
one in the British magazine Sync
[SY20], used in no.2-6 of Vol.3 and
collected in Fig. 4 (I was forced to
add the missing letters "b", "q",
"x", "v", "z", drawing them with
Paint).

I couldn't find any material about
the fonts used in the words "ZX
81", "ZX Spectrum" and the BASIC

A bit of rarity
(rummaging here and there)

Using Sinclair fonts to create custom stickers
by Alberto Apostolo

Fig. 1

Fig. 2

Fig. 3

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 31 of 86

SOFTWARE

commands on the ZX keyboards.
However, it can be partially solved
by using the Arial font in bold
despite some letters (e.g. "G")
having a very different shape.

In Fig. 5, the comparison between
the Arial font (left) and the real
ones written on the Sinclair
computers (right).

Finally, looking for "Sinclair QL
font", I came across the site of the
legendary Dilwyn Jones.

In [Jon20] you access an updated
section in March 2020, where you
can download TrueType fonts
suitable for the Windows and
MacIntosh environment (Fig.6).

On the same web page there are
also links to download versions
related to ZX81 and ZX Spectrum.

Bibliography and references

[BA20] (2020-10-24) retrieved from http://www.suppertime.co.uk/blogmywiki/2015/08/bauhaus2015-bitmap-font/

[DF20a] (2020-10-24) retrieved from https://www.dafont.com/zx-spectrum-7.font

[DF20b] (2020-10-24) retrieved from https://www.dafont.com/it/zx81.font

[FS20] (2020-10-24) retrieved from https://fontstruct.com/fontstructions/show/245226/sinclair_logo

[Jon20] (2020-10-24) retrieved from http://www.dilwyn.me.uk/fonts/

[SY20] (2020-10-24) retrieved from https://archive.org/details/syncmagazine

Fig. 4

Fig. 5

Fig. 6

https://www.dafont.com/zx-spectrum-7.font
https://www.dafont.com/it/zx81.font
https://archive.org/details/syncmagazine
http://www.suppertime.co.uk/blogmywiki/2015/08/bauhaus2015-bitmap-font/
https://fontstruct.com/fontstructions/show/245226/sinclair_logo
http://www.dilwyn.me.uk/fonts/

Page 32 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

Unbelievable! Simply unbelievable!

I have no other words to describe this software.
By the way, calling it software is extremely reductive;
SymbOS is a complete operating system, with utilities,
games, browsers and networking tools.
Saying that doesn't make much of an impression nowadays,
but try to think that this operating system runs on 8bit
machines based on the Z80 processor.
Yeah, SymbOS runs perfectly on Amstrad CPC, MSX,
Amstrad PCW and Enterprise 64/128...
Like I said at the beginning: incredible!

A bit of history
In the 1980s, GEOS laid a solid foundation for a graphical
operating system for Commodore 64. The OS developed
by Berkeley Softworks was a real revolution on 8bit
machines. Although many elements were only static, it
was incredible how an 8bit machine with only 64K of RAM
could run a graphical operating system like GEOS.
There were many attempts to reproduce the same result
also on Amstrad CPC, but for one reason or another none
of these were able to get anywhere near what was developed
for Commodore 64.

It was thus that, towards the end of 2000, the author
decided to create a real graphical operating system for
the CPC. On the other hand, many CPCs had basic 128K
of memory (the C64 only 64K), a 320x200 resolution with
4 colors (the C64 instead only 2 colors for each 8x8 area
at 320x200 resolution) and many other advantages over
the C64. Thus the idea of the SymbOS project was born.

SymbOS means "SYmbiosis Multitasking Based Operating
System". SymbOS would have been a real modern operating
system for Amstrad CPC, with real preemptive multitasking,
dynamic memory management up to 1024K and a look
and feel similar to MS Windows. In practice it should have
been a demonstration of what could have been achieved
on a CPC in the 1980s!
SymbOS development was not continuous, but continued
from the end of 2000 until at least 2017, when version
3.0 of SymbOS for CPC & MSX & PCW & EP was released

on the author's website. From that moment on you have
no information about any other updates, but version 3.0
is perfectly functional and definitely impressive for care,
functionality and performance!

SymbOS
SymbOS is available for:
- for the Amstrad CPC 464/664/6128 series,
- for MSX1 (+V9990), MSX2, MSX2+ and MSX TurboR
- for all Amstrad PCW, 8xxx, 9xxx and 10 series models
- for Enterprise 64/128 machines
It requires a minimum of 128K and a mass storage device
(floppy disk, IDE, SD...).

Faithful to the passion that lately I have for the Amstrad
CPC, I wanted to try just this version.
Not owning the real machine, the test has been run on
WinAPE. At the beginning I thought I was doing an injustice
to the author, but then I read on his site that also he, to
preserve to preserve the real machines, he often uses
WinAPE for development and debugging and I changed
my mind.

First startup...
The accompanying SymbOS manual is very detailed
regarding the installation of the MSX version, but rather
lacks instructions compared to the CPC.
In the Amstrad CPC package we find 4 ROMs and 3 diskettes.
Although you can run SymbOS directly from a floppy disk,
I opted for a mixed installation.
We will then boot the operating system from ROM and then
use the floppy disk to run programs that are not in memory.

SymbOS - Windows on the Amstrad CPC!
by Francesco Fiorentini

Fig. 1 - It is not Windows, but SymbOS on Amstrad CPC

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 33 of 86

SOFTWARE

Launch WInAPE and from Settings -> General -> Memory
menu, let's set the options as in Fig. 2.
Select RAM 64K + 256K RAM Expansion and 256K Silicon
Disk.

Notice that I inserted the 4 SymbOS ROMs into Upper1
slots up to Upper4:
- Upper1: sym-romA.rom
- Upper2: sym-romB.rom
- Upper3: sym-romC.rom
- Upper4: sym-romD.rom

In the Lower and Upper0 slots I inserted the ROM OS6128
and Basic 1-1 respectively.

Make sure there are no floppies inserted in drives A: and
B: and reset the emulator: Settings -> Reset. If everything
went well you should be faced with a screen as in Fig. 3.

Now, as specified on the screen, just type |Sym or |Symbos
to start the Operating System.

That's awesome. A fully Windows like operating system
has appeared on your Amstrad CPC, see Fig. 4. The first
thing you'll notice is the mouse arrow that, surprisingly,
moves smoothly across the desktop. As in Windows, just

a double click on the icons to start the indicated program
and a right click of the mouse to access the graphic settings.

The second thing you'll notice is the clock at the bottom
right. Even this perfectly synchronized with the guest
computer clock (Eh yeah, finding the time to write RMW
articles between work commitments and an 18-month-
old girl is a luxury I can only afford late at night. :-) - NdR).

So let's start the command prompt, which here is called
SymShell CLI. Double-click on its icon and... An error
message, see Fig. 5.

What happened? What happened? We simply need to tell
SymbOS where the programs we want to run reside.

Insert the SymbOS-CPC-AppsStandard.dsk disk (you
can also find this inside the zip containing the Roms) into
drive A with the command File -> Drive A: -> Insert Disc
Image. Then from the Start menu choose the Run...
command and in the next window click on the Browse...
button. An additional window will open in which you have
to choose an executable, in this case the Cmd.exe file is
more than fine (see Fig. 6 on next page), and confirm the
choice using the Open and Ok buttons.

After a few moments, the time to upload the file from the
diskette, you should find yourself in front of a familiar
looking window. Looks like exactly the DOS command
prompt, see Fig. 7. But the surprises aren't over here. Try

Fig. 2 - RAM and ROM Settings

Fig. 3 - Booting with SymbOS' ROM

Fig. 4 - The first boot of SymbOS on Amstrad CPC

Fig. 5 - SymShell CLI error

Page 34 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

typing DIR. Yes, the SymShell CLI is fully compatible with
the Windows command prompt. I've tried various commands
like COPY, REN, DEL... They are all perfectly implemented.
You can even create directories with the MD command.

The next dir will display the directory correctly. See Fig. 8.
Unfortunately, although it is possible to enter a directory
using the CD command, the directory is only a visual artifact,
since it does not work like the real directories of the DOS;
in fact, running the dir command inside the directory you
will also see the contents of the disk root. Perhaps it would
have been asking too much...

The wonders of SymShell CLI have not ended here, however,
through the File menu you can configure the appearance
of the CLI. And the options are certainly not few, see Fig.
9. We can choose the size of the shell: rows and columns,
the color of the text, the background, the border and even
decide whether to display the window in full screen.
All the settings you set will be stored in the cmd.ini file so
that each time you restart the shell again, you will find it
exactly as you configured it. I know I repeat myself, but
this is just incredible.

Obviously, wonders don't stop here... Try double-clicking
the Control Panel icon; it looks like it's right in front of
Windows 3.1 Control Panel (see Fig. 10). The surprising
thing is that all the icons on the control panel are functional
to configure SymbOS; try clicking Mouse or Display and
you will immediately realize the incredible number of options
to configure the system (Fig. 11).

It is interesting to note that the graphic resolution is set
by default to 320x200 at 4 colors but that it can also be
set to 640x200 at 2 colors. So let's try setting this resolution
to see the effect. The space for the windows increases
considerably and it is possible to position even four in a

Fig. 6 - Start the executable Cmd.exe

Fig. 7 - The SymbOS commad prompt

Fig. 8 - The DIR command; notice the 'Prova' directory

Fig. 9 - SymShell CLI Settings

Fig. 10 - The control panel and time zone...

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 35 of 86

SOFTWARE

row, see Fig. 12, unfortunately the characters become less
legible and the only 2 colors available are a limit, although
not insurmountable.

Let's end our first trip within SymbOS by talking about
SymCommander, a File Manager clearly inspired by the
famous Norton Commander. As you can see from the images
in Fig. 13 and 14 many of the most common actions to be
performed on files and disks, they are immediately reachable
through convenient buttons placed under the graphical
representations of the directories.

All the other commands, and not a few, can be reached
from the convenient dropdwon menu. Of course,
SymCommander can also be configured for user use and
consumption. The SymCommander is also accompanied
by a convenient help file, which can be retrieved via the
Help menu.

Note, in Fig. 14, how the SymCommander icon and its Help
have two different images in the Task Bar that allow you to
immediately identify them.

Conclusions
Well, what more can I say? You would have guessed my
opinion by reading the article. SymbOS is an incredible
product. Careful down to the smallest details: try double-
clicking on the watch in the task bar or pressing the icon

next to it (spoiler: it is the desktop display function); fast
and reliable (during my tests I have never found crashes
or strange behaviors, just a glitch in the SymCommander).
You can change screen resolution on the fly, no need to
restart or upload anything...

Had it been available on the market in the 1980s, Amstrad
CPC would certainly have had its killer application for the
office market.

Oh, and all this is just the tip of SymbOS' iceberg. On the
author's website you will find dozens of other programs,
games and even utilities for internet connection, which
obviously we will not fail to test in subsequent articles of
RMW. My regret is that I do not have a real machine to test
it on original HW, but I invite those who have one to send
us photos, comments and also a complete review. Obviously
the invitation is open to all supported hardware, not just
Amstrad CPC.

SymbOS can be downloaded from:
http://www.symbos.de/

Try it, you won't regret it!

Fig. 11 - Display and Mouse Options

Fig. 12 - SymbOS set with 640x200 resolution

Fig. 13 e 14 - SymCommander at 640x200 and
320x200 resolutions

Page 36 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

Talking about Sprite Collisions, a topic discussed, moreover,
in part 3 of the Felice Nardella’s Tutorial about how to
create a Game in Full BASIC V2 (this can be found on the
RP Italia group on Facebook), it should be noted that these
are also events that generate an IRQ type Interrupt
Hardware request as previously seen when we have
mentioned the sources of Interrupt of the dedicated CIA
#1 chip.

The VIC-II graphics chip, the C64 GPU, has 4 sources of
Interrupt requests (see Fig. 1), including the Sprite to
Sprite Collision and the Sprite to Data Collision.

Similarly to the 2 CIA chips, Interrupt sources from VIC-
II are controlled by 2 Internal Registers (See FIG. 2): the
IRQ Mask Register (IRQMASK) mapped to address 53274

($D01A) and THE VIC Interrupt Flag Register (VICIRQ)
mapped to address 53273 ($D019).
The Interrupt Flag Register reports when an Interrupt
originates from VIC-II and indicates which source generated
the Interrupt request.

Bit 7 and the corresponding bits responsible for the
Interrupt request will be set to 1.

Following the occurrence of an Interrupt request, a
"latch” (a sort of “lock”) will be set in the Interrupt Flag
Register so that no further Interrupt requests can originate
from the same source until the latch is reset by writing 1
in the specific bit related, precisely, to the source of the
Interrupt.

The IRQ Mask Register (or Interrupt Enable Register) is
used instead to enable/disable the 4 sources of Interrupt
requests of the VIC-II.

It is necessary to write 1 or 0 to one of the first 4 bits of
Registry 53274 ($D01A) to enable or disable one of the
Interrupt sources, respectively.

When there is a collision between 2 or more Sprites or
between a Sprite and a Character or a part of the Bitmapped

When sprite collisions don't collide!
by Attilio Capuozzo Founder of RetroProgramming Italia – RP Italia

Fig. 1 - Interrupt Sources

Fig. 2 - Interrupt Flag Register

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 37 of 86

SOFTWARE

Screen, another 2 Registers come into play (see FIG. 3)
which are respectively the Sprite to Sprite Collision Register
(SPSPCL) mapped at address 53278 ($D01E) and the
Sprite to Data Collision Register (SPBGCL) mapped at
address 53279 ($D01F), the latter, in the technical literature,
is also called Sprite to Foreground Collision Register or
again Sprite to Background Collision Register but we prefer
to use the prevailing name proposed by the C64 PROGRAM'S
REFERENCE GUIDE which we consider to be more relevant
to the nature of the Collision examined and less subject
to interpretative ambiguity by the reader (as mentioned,
Sprite to Data Collision Register).

Each single bit of both Collision Logs corresponds to one
of the 8 possible Sprites.

By reading these Records it is therefore possible to verify
which Sprites were involved in a Collision as the respective
bits will be set to 1.

Reading the Records will result in the content being reset.

With regard to Collision, it is essential to note that it will
only occur when the position of a non-transparent pixel
of the rectangular area of a Sprite (24x21 pixels in the
case of a Normal Size Sprite) coincides with the position
of a non-transparent pixel of another Sprite or when it
meets a Foreground pixel of a graphic element of the
Display (Character Block in Text Mode or Cell in Bitmap Mode).

In Standard Display Color Mode, non-transparent

(Foreground) pixel is 1 and the Background pixel is 0.

In the MultiColor Mode (MCM), Foreground pixels correspond
to the bit combinations “10” and “11”, while the Background
pixels also include, exceptionally, the bit pair “01” in
addition to the bit combination “00”.
Therefore, keep in mind that bit pair “01” DOES NOT
generate Collision.

Remember, for the convenience of the reader, that the
color corresponding to the bit pair “01” in a Sprite Multicolor
is set by the Sprite Multicolor Register 0 (SPMC0) mapped
to address 53285 ($D025).

In the Multicolor Character Mode, however, the color can
be chosen through the Background Color 1 Register
(BGCOL1) mapped to address 53282 ($D022) and finally
in the case of the Multicolor Bitmap Mode, the color of the
bit pair “01” can be set through the high nibble of the
Screen Memory location corresponding to the Bitmap Cell.

That's all folks!

The group RetroProgramming Italia - RP Italia
can be reached at:
https://www.facebook.com/groups/retroprogramming/

Fig. 3 - Sprite to Sprite Collision Register

Page 38 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

Intrigued by Michel Jean's article (see RMW 25 ITA and
RMW 3 ENG) and mindful of a conversation with Ermanno
Betori some time ago, where we had discussed the
possibility of learning FORTH, I decided to give myself a
chance and start studying this unusual language.

Introduction
I would like to say that I do not currently know the Forth
and therefore it is not my intention to teach this language,
but rather to create a series of articles with some personal
considerations that could be useful to those who decide
to follow this same path.
There are dozens of manuals, guides and code examples
for any language on the web, and Forth is obviously no
exception, but I personally wanted to enrich my paper
collection by purchasing Steven Vickers' FORTH
Programming book. This book is a reprint of the Jupiter
ACE manual on the 35th anniversary (in 2017) of the
launch of this computer, which happened in 1982.

The examples that I propose will therefore be compatible
with the Forth version of the Jupiter ACE, although in
theory it should be possible to run them on other machines.
The TI99/4A for example has several implementations of
Forth, some of which are very rich in commands.

The Forth Dictionary
As we read in Michel Jean's excellent article, Forth is a
rather particular programming language. So, let us begin
to look at some of these particularities together. The first
and perhaps the most obvious is its dictionary.

Try this command:
vlist

If you ran it on the ACE Jupiter emulator, or even better
on real hardware if you are among the lucky owners, you
should see the result of [Fig. 1].

This collection of commands is known as the Forth
Vocabulary. The idea behind Forth is to expand this list
by creating new commands from existing ones. Once these
additional commands are created, they will enrich what
is known as the Forth Dictionary.

Obviously, these new commands can also be used to create
new ones: you can easily understand the potential of Forth
over other programming languages.

But let's take a quick look at an example of how easy it is
to enrich basic language with new features.

Then type the command:
cls
to clean the screen and then type the following code:
: hello
CR. "hello world"
;

For the time being, let us not worry about the instructions,
we will analyse them later, but concentrate on the result.
Be careful to respect all the spaces, even the one between
the first double apex and the h of hello, otherwise you will

May the FORTH be with us - part one
by Francesco Fiorentini

Fig. 1 - Jupiter ACE Forth Dictionary Fig. 2 - The HELLO program

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 39 of 86

SOFTWARE

certainly receive an error.
If you have done everything correctly you should be faced
with a screen like the one in [Fig. 2]

Let's also try to run our program by typing:
hello
The result is certainly not exciting, but we have successfully
created our first Hello World in Forth:

Let's try running the VLIST command again.
As we can see, we have created a new Forth command
that has been added to the list of natively available
commands. We have therefore contributed to enriching
the Dictionary of our Forth.

But that's not all. As we said, our Hello command is now
an integral part of the Forth dictionary and can therefore
be used to create new commands.

Type the following code:
: clshello
cls
hello
;

If you have done everything correctly you should receive
the OK message at the end. Then try the new command:
clshello
That's right! It cleans the screen and then prints the Hello
World message on screen.

If we repeat the VLIST command again, we'll see our
CLSHELLO command at the top of the command list,
followed by the previous HELLO.

The commands : e ;
As you have probably already guessed, the command :
(colon) is used to declare the definition of a new word of
the Forth Dictionary.

The ; command (semicolon), on the other hand, is used
to tell Forth that the definition is finished.
What if we want to review and correct our listings? How
can we do that?

LIST, EDIT, and FORGET commands
We can use the LIST command:
hello list

Page 40 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

and the EDIT command respectively:
edit clshello

What if we wanted to delete one of the newly created
commands instead? Nothing easier than simply telling
Forth to forget the command:
forget hello

Note that the Forth is smart enough to forget the CLSHELLO
command which was derived from the HELLO command.

We've come to the end of our first FORTH diary. I hope
that I have aroused your curiosity a bit and that, like me,
you want to discover the peculiarities of this language
that, especially in Italy, went a little underrated in the
golden years of the 8 bits.

Before I drop you off at the box on the ACE Jupiter emulator,
I want to wish a Happy New Year to all of you!

Jupiter ACE emulation

For a good Jupiter ACE emulation and execute the
examples in the article, you can use the SpudACE
emulator.

Alternatively the no$zx emulator, but having the
precaution to choose the Jupiter ACE as ZX Model to
be emulated from the main menu:
Options -> Emulation Setup.

Both emulators can be downloade from:
http://www.jupiter-ace.co.uk/emulators_win.html

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 41 of 86

SOFTWARE

While closing this issue of RetroMagazine World, we realized
that, compared to previous issues, a few lines of code
were missing.

In order to compensate for this deficiency, we've contacted
Marco Pistorio who, basically in no time, provided us with
not one, but two programs in CBM BASIC V2 ready to be
formatted. Our choice fell on this algorithm of LIFE, the
game of life.

We leave to the readers the task to analyze the code and
possibly modify it to increase the number of generations.

The Game of Life, also known simply as Life, is a cellular
automaton devised by the British mathematician John
Horton Conway in 1970.[1] It is a zero-player game,
meaning that its evolution is determined by its initial state,
requiring no further input. One interacts with the Game of
Life by creating an initial configuration and observing how
it evolves. It is Turing complete and can simulate a universal
constructor or any other Turing machine.
From Wikipedia:
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

LIFE: the game of life
by Marco Pistorio

Fig. 1 - Output of the program

100 rem game of Life
101 poke53280,0:poke53281,0:poke646,5
102 printchr$(147);
105 :
106 rem define arrays
107 dim x$(9,9),y$(9,9)
109 :
110 fd=1:gosub 4000
115 :
130 x$(4,4)="*":x$(4,5)="*":x$(4,6)="*"
133 x$(5,4)="*":x$(5,6)="*"
135 x$(6,4)="*":x$(6,5)="*":x$(6,6)="*"
199 :
200 for gn=1 to 7
202 :
205 gosub 3000
299 :
300 rem calculates the next generation
310 for j=2 to 8
315 :
320 for k=2 to 8
321 :
325 gosub 900
326 :
327 cr$=left$(x$(j,k),1)
330 if cr$=" " then 400
331 :
335 if sv<=1 then y$(j,k)=" "
336 if sv>=4 then y$(j,k)=" "
337 if sv>=2 and sv<=3 then y$(j,k)="*"
350 goto 500
399 :
400 if sv=3 then y$(j,k)="*"
499 :
500 next k,j
600 gosub 2000

610 fd=2:gosub 4000
699 :
700 next gn
800 end
899 :
900 rem cell proximity control
901 sv=0
902 if x$(j1,k1)="*" then sv=sv+1
903 if x$(j1,k) ="*" then sv=sv+1
904 if x$(j1,k+1)="*" then sv=sv+1
905 if x$(j,k1) ="*" then sv=sv+1
906 if x$(j,k+1) ="*" then sv=sv+1
907 if x$(j+1,k1)="*" then sv=sv+1
908 if x$(j+1,k) ="*" then sv=sv+1
909 if x$(j+1,k+1)="*" then sv=sv+1
910 return
999 :
2000 rem copy arrays
2001 for j=1 to 9
2002 for k=1 to 9
2003 x$(j,k)=y$(j,k)
2004 next k,j
2005 return
2999 :
3000 rem drw arrays 9*9
3001 :
3002 print"generation:";gn
3005 :
3010 for j=1 to 9
3020 for k=1 to 9
3025 :
3030 print mid$(x$(j,k),1,1);
3035 :
3040 next k
3050 :
3060 print
3070 next j
3080 return
3999 :
4000 rem fill the arrays
4001 for j=1 to 9
4002 for k=1 to 9
4003 :
4004 if fd=1 then y$(j,k)=" ":x$(j,k)=" "
4005 if fd=2 then y$(j,k)=" "
4006 :
4007 next k,j
4008 return

Page 42 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

In the 23rd issue of the Italian RMW, Francesco Sblendorio
illustrated his project “PETSCII-BBS Builder”, a Java
framework with allows you to build a complete BBS for
Commodore computers connected to the Internet instead
of through the analogue telephone line as it once used to be.

As he mentioned in the his interview, the project was fairly
successful and the framework was used to create other
BBSs in addition to the one created by Francesco himself,
which currently runs at bbs.sblendorio.eu:6510.
To connect a Commodore 64 to the BBS, a modem card

must be plugged into the user port, such as Pasquale De
Luna's "KC64Wifi” card [1]. Unfortunately, however, not
many C64 owners have such a modem and this somewhat
limits the use of the same BBS by most of them.
Thinking about this problem, some time ago I came up
with the idea of setting up a C64 emulator and having it
connected in some way to Francesco Sblendorio's BBS.
In fact, you could already do this with the good old VICE
emulator, after having it properly configured; however, it
is not really easy for inexperienced users. My idea, on the
other hand, was to make available an online emulator that
can be reached directly from an Internet browser, which
would then be ready for use without any installation or
configuration, thus allowing access to the BBS even by
the occasional user who just wanted to browse for a little
while.
The idea of the emulator in the browser has always
fascinated me, for the ease of access that it involves, but
also because using the JavaScript language the emulator

becomes modifiable to your liking by opening infinite
possibilities. For example, you can inspect or modify “open
heart” memory locations, while the emulator is running
without interrupting execution.
Over the last few years I have created several emulators
running in a browser (Laser 500, LM80C, ChildZ, General

Processor and VIC20), mainly for personal use, for example
to debug my cross-compiled programs or to reverse-
engineer some of the computers I have dealt with.
For the BBS, however, I didn’t want to start from scratch,
both because writing a C64 emulator is quite complex
due to its custom chips and because the Commodore 64
is fortunately one of the most emulated computers so far;
so it made no sense to reinvent the wheel, it was easy to
look around in the open-source world to see what was
available.

The “chips” project
After examining different solutions, my choice went to
Andre Weissflog's fascinating “chips” project, which you
can see in action on the website "Tiny 8 bit Emulators” [2].
The idea behind the project is truly innovative: rather than
creating a classic emulator, the author thought of simulating
separately the individual chips that make up a computer
in the form of C language files, and then "virtually"
connecting them together. This way you can recreate
different systems simply by changing the chips by which
the system is composed.
The emulation takes place precisely at the single clock
cycle (cycle-exact) and all pins are emulated as in the real
chips. The implementation is very efficient and it is all
written in standard C language; each chip resides in a “.h”
file without the need for other dependencies and can be

Accessing a PETSCII BBS from a web browser
by Antonino Porcino

Fig. 1 - The BBS main menu

Fig. 2 - Example of interaction between JavaScript
and emulator: JavaScript injects BASIC code into the

C64 using the function "paste()"

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 43 of 86

SOFTWARE

included in your project, in fact that's how I emulated the
Z80, the TMS-9929 and the AY-3-8910 of the LM80C
computer [3].
Andre Weissflog's brilliant idea was to connect the chips
together with a simulated 64-pin bus; with modern 64-
bit architectures, this bus can safely reside in a CPU word
and be exchanged in the C functions within a normal
processor register, thus guaranteeing maximum efficiency.
For example, the A0-A15 address bus lines reside in bits
0-15 of the word, while the 8 bits of the data bus reside
in bits 16 to 23. Other control signals such as RW, IRQ,
NMI, etc... reside in the subsequent bits. Writing and
reading from this 64-bit word is a very fast operation as
modern CPUs can move data and perform shift operations
in the same clock cycle.
To use one of these emulated chips, simply perform the
function called "tick()" which is equivalent to advancing
the chip of a clock cycle. In this step, the internal registers
and I/O feet are updated just as a real chip would.

In Andre Weissflog's project many of the integrated circuits
of the 8-bit computers (Z80, 6502, etc.) were implemented.
However, since it is a project carried out by a single person,
the emulation is not always perfect and there are incomplete
areas that the author unfortunately did not have time to
finish. However, we are amazed at the enormous amount
of work done and browsing the sources of the project is
an extremely instructive exercise for the retrocomputing
enthusiast.
In addition to individual chips, ready-to-use systems have
been created in the project, with already connected circuits
that therefore emulate a complete computer (VIC20, C64,
ZX Spectrum, Amstrad CPC, etc.); for example, the C64
emulator resides in the file “c64.h” to which you only have
to connect keyboard, audio and video -- which in my
project I connected to an Internet browser.

However, there is one issue: the browser speaks JavaScript
while “chips” is written in C. How to make the two
communicate with each other? And here comes help from
a recent HTML technology called WebAssembly. It is
essentially a standardized virtual machine that runs in a
sandbox inside the browser and is able to execute its byte
code very efficiently. This byte code is not linked to a
specific CPU architecture, but it is generic without even
registers (it only uses the stack); moreover, as it is structured,
it translates very well into machine language and the
performance is close to the execution of the native code.

The byte code is obviously not handwritten, but is generated
by the various compilers, in my case by "emscripten” [10]
the C/C++ compiler created specifically for the WebAssembly.

With WebAssembly we can run C programs within the
browser, or even an entire C64 emulator. The browser
keyboard, video and audio must be “connected” to the
emulator using the appropriate JavaScript code. The screen
is nothing more than a normal HTML canvas, while for the
sound there are the "API audio”s of the browser, which
essentially reproduce on the speakers the sample buffer
that the emulator provides at regular intervals.
Having previously written an emulator for VIC-20 with
Andre Weissflog's project, I simply adapted its code for
C64, taking advantage of the similarity between these two
computers. In a short time I created a first working
prototype with the classic “READY” prompt and the 38911
bytes available to the user.
Compared to the original project, I made some minor
changes, such as adding the RESTORE key (which becomes
"PGUP” on the PC keyboard) that was not implemented.
To do this, after consulting the C64 wiring diagram, I saw
that RESTORE key line from the keyboard matrix goes
directly to the NMI pin of CPU 6510, so it was just a matter
to add the following lines in the emulator code:
Where “pins” is the 64-bit word described earlier that
contains the entire bus. As you can see, to turn on the
NMI pin it was sufficient to make a binary OR using the

pipe operator “|” of the C.

The virtual modem
Set up the emulator, how do we proceed for the BBS? My
first idea was to simulate one of the various modems
available in order to use existing communication programs.
But I immediately realized the enormous effort required,
so I opted for another quicker solution: implementing my
own virtual modem. In the end it was not a big effort: the
modem simply had to receive and send characters.
Since there are no I/O ports on the C64 (unlike the Z80,
for example), my virtual modem had to be mapped to
memory, as is already the case for all devices in the C64.
In the “c64_tick()" function, I went to find where the I/O
mapped to memory is managed and subtracted the space

Page 44 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

from $D7F0 to $D7FF from SID, reserving it for my virtual
device:
At each reading in this range, I run the JavaScript function
“modem_read()" and at each writing call “modem_write()”,
so as to intercept the modem accesses comfortably from

the JavaScript side:
My virtual modem is structured as follows:
DATA_IN and DATA_OUT are simply the locations where the
characters are transmitted and received from the modem.

DATA_REQ is a flag indicating whether there are characters

in the receive buffer. CONNST returns the status connected/
not connected to the BBS: I use it to change the color of
the screen from black (connected) to red (not connected).

As far as ACK is concerned, this allows a sort of handshake
with the modem for the exchange of characters in reception.
Initially there had to be no handshake because the data
from the modem to CPU had to pass through the single I/
O read clock cycle. Then, however, this system proved
unreliable, sometimes some characters were inexplicably lost.

I did not understand exactly why, but rather than getting
lost in the meanders of an infinite troubleshooting (considering
that there is an emulator not very tested), I preferred to
solve quickly with a brutal handshake mechanism: after
the CPU reads the incoming byte, it sends on the ACK port
first the value “0” and immediately after “1”; in this way
the transition from 0 to 1 indicates that the character was
acquired by the CPU and the modem can proceed with the
next one.

The terminal program

Having developed the virtual modem, I needed a
communication program to run on the emulated C64, since
none of the existing ones could be compatible. To read and
print the characters on screen, Francesco Sblendorio
suggested that I simply use the routines CHROUT ($FFD2)
and GETIN ($FFE4) of the C64 kernal, as is already the
case in his software for the "Ultimate 64” card. I then wrote
a small assembly program that essentially loops infinitely
between reading incoming characters and transmitting
keyboard typed characters to the modem.
Rather than using the bare and raw assembly, I have used
a macro language of my invention that for years has
accompanied me in all my projects for 6502. This tool
(which I called “Asmproc” [4]) allows me to write an

assembly that can be read using constructs like IF-THEN,
DO-LOOP etc... avoiding the use of the classic branch-here
and branch-there that completely obscure the
comprehensibility of the code in 6502.
Initially the BBS terminal program was really a handful of
bytes, then it was gradually expanded to as many as 165
bytes, with the addition of the flashing cursor, the CHR$(7)
bell and other small details. If you're curious, find the full
source at the bottom of the article.

For my BBS purpose, the terminal program had to start

Fig. 3 - The terminal program handshakes with the
virtual modem by sending "0" and "1" bytes on the

ACK port

Fig. 4 - Example of structured assembly programming with
Asmproc: the implementation of the "cursor_off" routine; as

you can see there are no labels or BEQ/BNE

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 45 of 86

SOFTWARE

automatically when the emulator started; but since on the
C64, the memory is reset at boot time, it was necessary to
“inject” the program into RAM only after the end of the
same boot. One trick I came up with is to listen to location
204, which is the one that determines whether the cursor
is present on the screen or off; when the cursor is on, it
means that the "READY” appeared on the screen and then
you can inject the program into RAM and then immediately
after inserting the characters “RUN” + RETURN into the
keyboard buffer, causing it to run.

WebSocket Tunnel
After the program on the C64 that sends characters to the
virtual modem, how do these get from here to the BBS? In
a normal world this would happen with a trivial TCP connection
on port 6510 which is the one where the BBS turns. But
no, there is an obstacle: for cybersecurity reasons the
browser cannot open any TCP connection with the outside
world.

To make up for this lack in recent years, a new standard
called WebSocket has been introduced: it is a protocol with
which connections similar to TCP sockets can be conveyed,
channelling them through the normal port 80 of the HTTP
service.

However, the BBS does not accept WebSocket connections,
only TCP connections. So what should we do? The idea I
had was to create a special utility to run separately that
accepts WebSocket connections from the emulator/browser
and forwards them to the normal TCP port of the BBS.
That's what's called tunnelling in jargon.
So I wrote an application in server-side JavaScript, which
is Node.js. With a lot of imagination I called it “websocket-
to-tcp”; like everything else it is open source and you can
find it on Github [5]. The utility can be run locally (“localhost”)
by launching it from the command prompt or you can simply
use the one that has been installed directly on the BBS
server so that the user does not have to perform any
installation.

However, there is a further complication: since the connection
to the WebSocket could originate from an emulator running
on a site in HTTPS (HTTP Secure), it was necessary to
implement this type of connection as well. Francesco
Sblendorio then proceeded to certify the BBS website with
"letsencrypt” [6] (an authority that issues certificates for
HTTPS free of charge) and subsequently installed the

relevant certificates on the server that is now able to
establish encrypted connections (your chats on the BBS
are therefore safe from spies!).

The tunnelling utility between WebSocket and TCP has been
written in Node.js because it has the advantage of being
available on all OS (Window, Linux, Mac) and of having
libraries ready and easy to use. Its operation is very simple:
it simply creates a web server on the specified port on which
WebSocket traffic passes while waiting for a connection
from the browser. Once connected, it opens a TCP connection
to the BBS and exchanges data between the two. A hundred
lines of code.

On the browser side, however, it is the virtual modem that
initiates communication via WebSocket and transmits the
characters it receives to the CPU.
The figure summarizes the connection system between
browser and BBS:

Using the emulator
Not shown in the figure is also the Web server on port 80
that provides the HTML page containing the emulator when
the user navigates to the BBS address.

In fact, you can open one of the following addresses with
any browser:

Fig. 5 - The "wstcp" utility running on the BBS server
creates a tunnel between WebSocket and TCP

Page 46 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

http://bbs.retrocampus.com or http://retrocampus.com/bbs
http://bbs.retroacademy.it

Alternatively, you can access the emulator repository on
Github and run the terminal program with the “load”
parameter:
https://nippur72.github.io/c64-emu/?load=nippur72/
terminal.prg

You can also use only C64 without BBS, omitting “load”:
https://nippur72.github.io/c64-emu
The emulator can also be embedded within another web
page with the following HTML code:
<iframe width="720" height="554" src="https://
nippur72.github.io/c64-emu/?load=nippur72/
terminal.prg"></iframe>

It is also possible to connect to a BBS other than the one
created by Francesco Sblendorio. In this case, you will need
to run the WebSocket tunnel locally, for example:
$ wstcp -t particlesbbs.dyndns.org -p 6400 -w 8080 -n bbs
(opens a WebSocket tunnel to BBS
“particlesbbs.dyndns.org:6400” via port 8080)
to then invoke the emulator with the parameter "wstcp”
indicating that the tunnel is active on localhost:8080:
https://nippur72.github.io/c64-emu/?wstcp=ws://
localhost:8080&load=nippur72/terminal.prg

I recommend using the Chrome browser, which turns out
to be the fastest, allowing it to run even on not-so-recent
computers. In fact, you will notice that the browser window
will tend to have a rather high CPU load; this is due to the
fact that the emulation is cycle-exact, which means that
you have to simulate the four C64 chips (CPU, VIC, SID and
CIA) at a speed of 1 MHz using a single thread. Chrome is
what does best in this business, while everyone else follows
at a distance.
Other browsers have also given incompatibility problems,
specifically with the “Blob.arrayBuffer()” function: on Safari
13 for Mac this function is not really implemented, while
on Firefox 83 it occasionally caused bytes to arrive from
the modem in the wrong order. To solve it I applied a patch
found on the internet that simply re-implements the functions
in JavaScript and inserts it into the class of the object
“Blob” (since JavaScript is a dynamic language you can do
this even at run-time). It is located in the file in the file
“patch-arrayBuffer.js”

Final considerations
In this article I illustrated how I created a C64 emulator
that runs in the browser, equipping it with a virtual modem,
with a terminal program, and then connecting it to the BBS
via the internet, through a WebSocket tunnel. Completing
this project was a pleasant challenge that allowed me to
confront some of the modern technologies, applying them
to the world of retro-computing. I hope you found the result
interesting.

Useful Links
[1] KC64Wifi by Pasquale De Luna: http://
www.codingkoala.com/kc64wifi
[2] Tiny 8 bit Emulators: https://floooh.github.io/tiny8bit
[3] LM80C Emulator: https://nippur72.github.io/lm80c-emu
[4] Asmproc: https://github.com/nippur72/asmproc
[5] WebSocket to TCP: https://github.com/nippur72/
websocket-to-tcp
[6] Let's Encrypt: https://letsencrypt.org
[7] BBS http://bbs.retrocampus.com and http://
bbs.retroacademy.it
[8] The C64 emulator online https://nippur72.github.io/
c64-emu
[9] C64-emu emulator and “terminal.prg” program sources
https://github.com/nippur72/c64-emu
[10] Emscripten Compiler https://emscripten.org

--> On the next page the source of “terminal.lm”

Fig. 6 - One of the images from the PETSCII-art
section of the BBS ©Ivan KodydaKillah

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 47 of 86

SOFTWARE

 processor 6502
// routine del kernal
const GETIN = $FFE4
const CHROUT = $FFD2
// porte del modem virtuale
dim MODEM_DATA_OUT as byte at $D7F2 ; caratteri da inviare
dim MODEM_DATA_IN as byte at $D7F0 ; caratteri in arrivo
dim MODEM_DATA_REQ as byte at $D7F3 ; 1 se ci sono caratteri in arrivo nel buffer
dim MODEM_ACK as byte at $D7F1 ; porta per l'handshake
dim MODEM_CONNST as byte at $D7F4 ; status del modem (0=connesso, <>0 disconnesso)
 org 2049
basic start compact
 2020 sys {main}
basic end
main:
 lda #0 : sta 53280 : sta 53281 ; black screen
 lda #15 : sta 54296 ; max volume
 lda #14 : jsr CHROUT ; lowercase
 lda #147 : jsr CHROUT ; clr
 lda #5 : jsr CHROUT ; white
terminal:
 ; controlla se ci sono caratteri da stampare nel buffer
 lda MODEM_DATA_REQ
 if a<>#0 then
 jsr cursor_off
 do
 ; esci da modalità QUOTE e INS
 ldx #0
 stx $D4
 stx $D8
 ; legge il carattere dal modem
 lda MODEM_DATA_IN
 ; se è CHR$(7) emette il suono della campana
 if a==#7 then jsr term_bell
 ; stampa il carattere a video
 jsr CHROUT
 ; notifica al modem che il carattere è stato ricevuto
 lda #0
 sta MODEM_ACK
 lda #1
 sta MODEM_ACK
 ; controlla se ci sono altri caratteri da stampare nel buffer
 lda MODEM_DATA_REQ
 loop while not zero
 jsr cursor_on
 end if
 ; legge un carattere da tastiera e lo manda al modem
 jsr GETIN
 if a<>#0 then sta MODEM_DATA_OUT
 ; aggiorna il colore dello schermo con lo status del modem (nero/rosso)
 lda MODEM_CONNST
 sta 53280
 sta 53281
 jmp terminal
; cursor on/off, term_bell (C) Francesco Sblendorio
; https://github.com/sblendorio/ultimateiidoslib/blob/master/src/samples/screen_utility.c
cursor_on:
 ldy #$00
 sty $cc
 rts
cursor_off:
 ldy $cc
 if zero then
 ldy #$01
 sty $cd
 do
 ldy $cf
 loop while not zero
 end if
 ldy #$ff
 sty $cc
 rts
term_bell:
 ldy #15 : sty $D418
 ldy #20 : sty $D401
 ldy #0 : sty $D405
 ldy #249 : sty $D406
 ldy #17 : sty $D404
 ldy #16 : sty $D404
 rts

Page 48 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

Getting the lead
Composing music for a game starts with a request, usually
through a private message from our Facebook Page or
Groups, Discord or from our website’s contact details. It
could be the person doing the game or someone in the
team asking “Hi, could you do music for my C64 game?”
or “I heard your music in a game, would you be interested
in doing music for our upcoming game on the Amiga?”.
And if it is someone we know it would be something like
“What about some music and sound effects for my new
MSX game?”. Many times, we are also actively following
projects and instigate the request by offering to do music
for them.

Before we accept, we do a couple of checks to see what
effort would be required (such as the number of tracks
needed for the game) to make sure that we can meet
required deadlines. We also try to see that the game
project is viable and is already in progress. Unfortunately,
in the past we put effort in making music for games that
were never released, and that’s always a pity.

Obviously, some “requests” are for our own projects, and
we treat these more or less the same way as any other project.

Starting off
Once we have decided to get on board, we try to get as
much information on the game itself. Video clips, screen-
shots and story-line all help us to capture the feel of the

game. Sometimes we are provided with music that would
fit the feel of the game, although this is not always the
best approach and could be counterproductive.

As already mentioned, the music itself is created specifically
for the request. We believe that the most important thing
for game music is to augment the user experience, to be
part of the overall “feel” of the game. Having a memorable
tune is great, but if it does not fit in the game’s atmosphere
it might actually make the game experience worse. In our
music we try to capture the essence of the game, and this
works even better when we have a free hand to take the
direction which we feel would be best.

We also ask questions about the project to know more
about the requirements, limitations and constraints. These
would cover technical aspects such as file size limit,
duration, looping, the number of channels to be used and
whether music will share a channel with sound effects.

Making the music
Once we are all set to go, the creative aspect is one of the
trickiest parts of the whole process. Usually, initially there
would be small clips done to get the feel of the sound
right. Lots of parts (and sometimes whole tunes) are
scrapped (sometimes the very next day) to keep only those
that sound right. There would be a lot of peer review going
on within Phaze101 members at this stage. When we have
created something that is good enough to start off with,
feedback from the person requesting the music is also
obtained, to make sure everyone is in sync before going
through more iterations.

Getting the sound right can be a tricky bit. We embrace
the limitations of the respective sound chip and try to
make the most out of it. After all, this is the fun of doing
retro music! For people used to composing music on
modern platforms, where a single note or sample can be
enough to create the wow factor for the whole track, this
can be sheer frustration. Getting samples right on Amiga
is not easy either, although there is more room for creativity
there. All this is done within the constraints of the file

Making music for a retrogame
by Phaze101

Fig. 1 - ProTracker Stacker 101

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 49 of 86

SOFTWARE

size / memory limitations imposed by the game requirements.
Once the sound is more or less defined (although this
would be constantly tweaked and sometimes completely
changed), work starts on the music itself. Sometimes a
draft version of the tune takes only a few hours to do.
Sometimes the project is left on the side for days or weeks,
waiting for a spark of inspiration to come by. This is
especially true if multiple tracks are required for the same
game since taking some time off the project can recharge
us with new ideas. When inspiration comes, if a computer
with a tracker is not handy, humming the tune and recording
it on a mobile is a good alternative to make sure that the
bright idea is captured. Sometimes trying out a tune on a
piano keyboard or on a guitar before helps to trigger ideas
which can then be transferred to a tracker in an already
mature state.

As things progress, we try the music out with the game
itself. As a start playing the music overlaid on existing
gameplay video (or screen shots) help to see the product
come together. We play the music over and over again
(especially if the music would be looping multiple times
within the game) to see if it quickly becomes annoying.
This helps us to try to minimise the effect of repetition by
doing changes that do not have a significant “cost” on
the overall file size.

At this point we also start focusing on the sound effects,
to make sure that everything fits within the overall feel of
the game, and that the volume levels are right. Sometimes
we are asked to do the music only with the sound effects
being done by someone else. Other times we participate
in projects where multiple tracks are done by different

people. This makes it even more important to keep a
holistic view of the product in mind, and to ensure that
everything together sounds as it should.

While doing the music and especially when they are mostly
finalised, we make it a point to hear the music on different
devices. If it sounds right on normal cheap headphones,
good expensive headphones, monitor speakers, external
speakers, mobile phones and car stereo … then it will
probably sound right on many devices. In collaboration
with the person requesting the music, music is also heard
and assessed both on emulators and on original hardware.
For C64/128 we ensure that it sounds right on both 6581
and 8580 SIDs which is why we avoid heavy use of the
SID filters.

The tools
The main tool is obviously the tracker itself. We have
worked with many different trackers over the years, but
when doing music for others one of the main concerns is
to use products that have a good stable play routine that
can be used in the game itself.

We prefer Goattracker for the Commodore 64 as we believe
it is currently one of the best trackers out there for the
Commodore machines. We use Arkos Tracker to do music
for the AY chip for MSX, Spectrum or CPC. It has a modern
interface and is very user friendly as far as trackers go.
When it comes to Amiga the tracker of choice is Pro Tracker
(including the Windows clone by Olav Sørensen). For the
Amiga we also have the help of Renoise on Windows with
various VST instruments to generate samples, and tools
such as Audacity to process them.
Occasionally we use other tools and are always happy to
experiment and try out new stuff.
Projects in 2020

Fig. 2 - Goattracker - Mario Cement Factory

Fig. 3 - Arkos - Freedom Fighter

Page 50 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

This year has been quite a busy one, as apart from our
own ongoing projects we concluded the music for a number
of games, with some others still in progress.

• Mario Cement Factory by Hayesmaker which is a port of
the Game & Watch retro handheld game to the Commodore
64 (Reviewed in RM).

• Freedom Fighter - Rise of the Humans by Pintus Giuseppe
Ettore (aka Geppo) on the MSX machines released in July
2020 (Reviewed in RM).

• Neptune Lander Elite by C64_Mark which is a variant of
the classic lander game for the Commodore 64 that is
bound to be released.

• Pik’n’Mix by Shallan50K on the Commodore 64 that will
be released towards the end of this year.

Concluding the project

When all is ready from the music’s aspect, it sometimes
takes weeks or months until the game is officially released.
When it is released, we support the game and the author
by putting a video on our YouTube channel or promote
the game on our social media channels. It is always an
honour and privilege for us to be invited to work on projects
and feel proud to share the work in any possible way.

References
R1 – Phaze101 FB Page: https://www.facebook.com/
Phaze101Games
R2 – Phaze101 FB Group: https://www.facebook.com/
groups/Phaze101
R3 – Phaze101 Discord: https://discord.gg/tXnRe4XYV7
R4 – Phaze101 Web Site: https://phaze101.com
R5 – Phaze101 YouTube: https://www.youtube.com/c/
Phaze101

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 51 of 86

SOFTWARE

GAME CODING WITH AREXX - PART 1

After analyzing the basic features of the language in the
previous issues, let's now see how to implement a text
adventure with ARexx. To better understand the topics
that will be covered, I recommend retrieving the previous
parts published in RetroMagazine numbers 20, 22 and
23, as well as the article "An introduction to Game Coding"
published in number 17.

It is important to note that the proposed implementation
is just one of the countless possible implementations of
such a game engine. Although not necessarily the most
efficient, it has been chosen for its ease of understanding
even by the less experienced user, without worrying too
much about issues related to memory usage both with
regard to the world of play and the management of variables.

1. IMPLEMENTATION OF THE GAMING WORLD

In William Gibson’s novels, the well-known "cyberpunk"
writer, the term "matrix" has always been used to define
the structure of cyberspace within which part of the
protagonists' lives took place. In the trilogy "The Matrix",
clearly inspired by these novels, the matrix was the construct
within which the protagonists believed they lived. In
accordance with these illustrious predecessors, here is
our gaming world, defined as a two-dimensional matrix:

/* prepare matrix. 1= room exists */
matrix.=1
matrix.1.1=0
matrix.1.5=0
...
...

As we have seen in the previous numbers, the definition
"matrix. =1" alone is sufficient to declare a multidimensional
construct and to initialize it in order to indicate to the code
which locations actually exist and which don’t. Since not
all "rooms" are accessible locations, as can be seen from
the map in Figure 1, instructions such as "array.x.y=0"
serve to "mark" some elements for other purposes. For
example, the first location (indices 1.1), will be used to
store the description for the "game over" text (we’ll see
later how). The map describes a dystopic world that

revolves around a matrix of 7 rows and 8 columns. From
the code point of view, using such a construct renders
extremely easy to navigate it. If, for example, we assume
we are in the location (x,y), going north will simply mean
"move one row up", while going east will mean "advance
one column". In other words:

when name='NORTH' then x=x1
when name='EAST' then y=y+1

At this point, however, it is necessary to make some
assumptions about how we want the world of play to be
represented to the user and how we want him/her to
interact with it. Again, I chose to use a multidimensional
matrix, consisting of as many "columns" and “rows” as
the total game locations (also counting those inaccessible
to the user since they are used for other purposes). Below
is an example with its explanation.

Situation.1.2='Panthers cove. '
Situation.2.2= 'Panthers are a group of
crackers living on the margins of society''.'
Situation.3.2='They are strongly politicized
and their purpose is, as often happens,'
Situation.4.2='to put the system in crisis.
Though you do not share the same ideals, '
Situation.5.2= 'they respect your ethics.
You will not get direct help, except in the
form of software.'
Situation.6.2= 'A war DIALER is currently
available.'
Situation.7.2= 'NORTH EAST WEST UP DOWN'

As you can see when comparing the map, the one reported
above is the description for location Number 2.

In the game, each room is described by a 7-line text. When
necessary, the penultimate line describes a creature or
object. After killing the creature, or removing the object,
this line must be "reset" (with a simple Situation.6.2='')
to avoid giving false information.

The last line lists the directions that are not allowed for
navigating rooms. After defining the variables "x" and
"y" (current position) and the variables "maxrow" and
"maxcol" (limits of the game world matrix), the description
of the current location will be found in our matrix at the

Introduction to ARexx – part 4
by Gianluca Girelli

Page 52 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

address "Pos=(x-1)*maxcol+y". Consequently, "Situation.5
1.Pos "will contain, in the example described above,
the"title" of our room (Panthers Cove).

We have therefore solved the first problem (representation
of the gaming world) and its implementation in ARexx
code is as follows:

/**/
/* Print location and situation */
/**/
Scenario:
say
do i=1 to 6
if Situation.I.Pos~='' then say
Situation.I.Pos
end
return

The above-described procedure simply displays the 6 lines
of text describing the location on the screen (unless one
of them is empty, for example because we have already
picked up the object). The seventh line, which tells the
code which directions are not allowed for navigation, will
be explained in the following paragraph.
2. NAVIGATION OF THE GAMING WORLD

Having understood how we can create a game world and
how to make it usable to the player, let's now see how to
move within it.

In the previous article, published in issue 4, we saw how
to implement a simple parser.
This parser was created precisely for this game and it
works with a simple grammar based on the historical form
"verb+object" typical of the very first text adventures.
Inserted a phrase like "go north", the parser "breaks" the
phrase in its components and, after checking that "go" is
actually a word contained in its vocabulary, calls the
corresponding routine.

This routine may take the form of:

/**/
/* GO */
/**/
Go:
if find(Situation.5 7.Pos,name)>0 then say
‘you can’'t go '|| name
else do
select
when name='NORTH' then x=x1

Fig. 1

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 53 of 86

SOFTWARE

when name='SOUTH' then x=x+1
when name='EAST' then y=y+1
when name='WEST' then y=y1
when name='UP' then x=x1
when name='DOWN' then x=x+1
otherwise say ‘I don't understand. Try again’;
say; return
end
Pos=(x1)*maxcol+y
do i=1 to 6
if Situation.I.Pos~='' then say Situation.I.Pos
end
end
return

At this point, the smartest readers will have already
understood what the code does and how the notorious line
7 works:
- first, we check if the chosen direction is actually allowed:
for example, if we want to go east while we are in the last
rightmost column, this will not be possible ('You can't go
to'). The "find" statement searches for a substring within
a string: if the substring is found in line 7 of the current
location, that direction is forbidden for navigation;
- if the desired direction is among those allowed, the
variables "x" or "y" will be modified depending on the
direction, actually moving the player to the new location;
- finally, after transforming the matrix coordinates into a
scalar position, the description of the new position will be
displayed on the screen.

3. INTERACTION WITH THE WORLD OF GAME

As the last part of this article, let's now see how you can
interact with the game world. The "navigation" routine is
clearly an important part, but without something more
complex there will never be a game, even if it was relegated
to the rank of a simple "walking simulator". How many and
what actions our parser will need to be able to understand
depend on how we want to move our story forward, but as
a minimum we will need to be able to process the following
requests: "go", "take", "use", "examine" (to get more
information about an object), "look" (to request that the
description of the room be displayed again), "list" (or
"inventory", to check our equipment) and of course
"vocabulary" to give the user an idea of what they can do.
In addition, our code may contain other undocumented
instructions, usually used by programmers and testers
when developing the software.

It is impossible, in fact, to demand that these figures restart
the game from scratch only to test new features or to
eliminate a bug noticed at an advanced stage. In the event
that these features are released to the public once the
development is completed, we are dealing with the so-
called "cheat codes".

In the case of our game, "debug" recalls a routine used to
move quickly from any location to any other without having
to traverse the entire map, while "var" displays the status
of the game variables on the screen to check that no wrong
assignments are present.

Not all actions need arguments (ex:
"list" or "look") and this is why the
following parser is divided into two
subparts: if the "phrase" contains
only one word it is directly assigned
to the variable "verb" (provided it is
a valid command) and the variable
"name" (our object) is reset, otherwise
the phrase is broken down into its
elements.

It is important to note that in a game
like this it might not be necessary to
systematically "reset" the variable
"name". After all, if after the "LOOK"
command (which does not need to
be followed by a name) the "GO"
command is invoked (for which the
"name" variable will contain the Fig. 2

Page 54 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

SOFTWARE

desired direction), there would be no conflict within the
parser. In general, however, remember to always keep an
active control over your entire variable system: as the
complexity of the code increases, it may be extremely
difficult to understand where a possible "bug" is generated
and, consequently, to correct it.

/**/
/* Syntax parser */
/**/
Parser:
if words =1 then
select
when phrase='LOOK' then do
verb='LOOK'; name=''
end
when phrase='LIST' then do
verb='LIST'; name=''
end
when phrase='QUIT' then do
verb='QUIT'; name=''
end
when phrase='VOC' then do
verb='VOC'; name=''
end
when phrase='DEBUG' then do
verb='DEBUG'; name=''
end
otherwise say"I don't understand. try again"
end
if words =2 then do
verb=left (phrase, index(phrase, ' ')1)
name=right(sentence,length (sentence)
index(sentence,' '))
end
return

At this point, the "trick" is almost done. The next step is to
invoke the "main code" and invoke, depending on the
situation, the corresponding routine:

select
when verb='GO' then call Go(name, Pos)
when verb='LOOK' then call Look()
when verb='TAKE' then call Take(name)
when verb='EXAMINE' then call Examine (name)
when verb='USE' then call Use(name)
when verb='LIST' then call List()
when verb='VOC' then call Vocabulary()
when verb='DEBUG' then call Debug()
when verb='VAR' then call Var (name)

when verb='QUIT' then nop
otherwise say 'I don't know what it means '
|| verb
end

At this point, our job is practically complete. What is missing
is to define how the management of events and objects
within the game advances our story plot. In the next issue,
we will analyze with a greater level of detail what we still
need in order to finally enjoy our text adventure.

4. CONCLUSIONS

Nowadays there are many frameworks specifically designed
to develop text adventures and using them is essential for
the developer who needs to focus on the story plot rather
than "wasting time" writing the code that manages it,
especially when the intention is to publish on many different
platforms, be they "retro" or "next-gen". For programmers
who prefer to write their own code though, having an idea
of how to implement a game world and finally be able to
achieve it is, however, priceless.
In the next issue, we will continue to explore ARexx to
discover how to write routines that will actually allow us to
interact in a complex way to advance our story and discover
every secret.

BIBLIOGRAPHY

- Mike Cowlishaw "The REXX Language: A Practical
Approach to Programming" (1985) Prentice Hall.
ISBN 0-13-780651-5.
- Chris Zamara, Nick Sullivan "Using Arexx on the
Amiga" (1991) Abacus Software Inc. ISBN 1-55755-
114-6.
- AmigaOS 2.0 System Manual
- http://it.wikipedia.org/wiki/Game_engine
- http://it.wikipedia.org/wiki/Porting

How to use the examples

As reported in the article on num. 20, to use the
examples you must save the script in text mode in
the format "script_name.rexx".
To launch the script just type from shell:
">rx script_name.rexx"
or simply:
">rx script_name".

http://it.wikipedia.org/wiki/Game_engine
http://it.wikipedia.org/wiki/Porting

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 55 of 86

RETROHISTORY

JAPAN HISTORY
 Oh no! More G&W!
by Michele Ugolini

Finally, the last trend coming from the Internet: the
alarm clock. In fact, there is a clock with several
wallpapers, but there is no alarm clock that can get
us out of bed in the morning, perhaps with Mario's
ringtone.
What a pity.

What are the benefits? Yes, of course many: we are
playing an official Nintendo product and above all
from the web have already come numerous tutorials,
which obviously both RMW and I strongly advise
against looking/viewing/applying, through which you
can modify the start of Mario and run Doom.
More programs and games may be included in the
future, but the sanctity of an object officially released
by Nintendo will disappear!
Be aware, however, that many reckless people have
already succeeded in reprogramming.
Doom is an epic title but the graphics of the 90s,
combined with such a small display, generates
several visual problems: I challenge anyone not to
complain because of visual disturbances after half an
hour of gameplay.
On the other hand, the taste of running various
games/programs in this G&W, denotes the high
talent of our most reckless friends. (see figure 1)

As we know, Nintendo is famous for generating
excitement in the companies of its rivals. Rivals not in
the true sense of the word since marketing in Japan
only creates other marketing and each company
enters the revenue through its own intelligent slice of
"subfolder-style" services.

"Oh no! More Lemmings!": that was the Psygnosis
title that we used to play in the '90s. "Oh no! More
G&W!" says the title of this article since these
electronic wonders are returning to the market
today as the famous little creatures.

The original Nintendo G&W was finally released for
the 35th anniversary of the great "N" company.
Have you already showcased it? How many minutes
did you use it? Problems with your eyesight, or are
you okay?

Regardless of these provocative questions, it
remains a sacred object for us collectors. The feel of
rubber keys is identical to the original G&W keys of
40 years ago.
The display, the design, the graphic arrangement,
are all simply adorable elements. Unlike the old pill
batteries, this time the battery is inserted internally,
collecting appreciation and mood from the web:
when the battery is exhausted , unfortunately, it will
be extracted to avoid swelling or dispersion of the
contents.

More bad news from the web?
The price has been heavily criticized, moreover,
which is no small feat, in this version of the G&W
there is no stand to keep it vertical in our
showcase.
A cardboard stand was instead present in the
remake of the 2010 G&W "Ball" that I had reviewed
a few episodes ago, a cheap but robust paper
product, functional and above all marked "G&W".
Too bad, we'll have to buy an anonymous booth
from the web!

Fig. 1 - Doom on Nintendo Game & Watch

Page 56 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

RETROHISTORY

And here's the news from a few days ago on the web:
Capcom will launch "Retro Station" on the market,
through Amazon Japan.
It will be a mini cabin, with a very particular vintage
style.
Personally, I find the design very provocative, in the
sense that I still can't decide if I will love it or not
digest it! The only certainty is that it will not go
unnoticed.

In Osaka nobody jokes, Capcom will insert ten
games, we can play Street Fighter (II, II Champion
Edition, Super Street Fighter II, Super Street Fighter
II Turbo, Super Puzzle Fighter II Turbo) and Mega
man (The Power Battle, 2 The Power Fighters, X,
Soccer, Man & Bass).
The dimensions are: 329 mm x 280 mm x 315 mm.
The weight will be relevant: 2.1 kg. (see Figure 2)
We will find a display and stereo speakers positioned
in front, from the web it is intuited that the audio will
enjoy excellent quality.
In Japan it will be possible to buy it for the price of
21,780 yen, or about 176 of our euros. We will have
to wait for the Western import which will be subject
to the various customs surcharges.

This time the price is high and the object is very
particular, will our heroes, from Capcom, be able to
keep up with the skillful strategies of the Nintendo
market?
It is not a useless question, in fact, we must
remember the limited success of the mini console
Capcom Arcade, launched in April 2019: the units
sold did not arouse particular moods at Nintendo, the
game this time is open and the variables are reset,

only the future can tell us the past of this "nostalgia
operation"... still perpetrated by the Japanese giants
today.

Finally, do we want to talk about the Gig Tigers that
have finally arrived on the Italian market?
Three versions currently highly appreciated: Marvel
X-Men ProjectX , Sonic the hedgehog 3, Transformers
generation 2. The prices recorded on the web have
already begun to rise and fall. We have faced an
anomalous Black friday, a numb Cyber monday and a
very different Christmas awaits us than usual,
unfortunately society had to interface with an
insidious and silent enemy. Market strategies have
also had to face new variables, some unsuspectingly
fruitful, others incredibly bankrupt.

Sales of Tiger GIGS, it seems, are going well, on the
website camelcamelcamel.it you can keep track of
price curves.

https://en.camelcamelcamel.com/

Unexpected news recently came from Sega, the same
Sega that allowed Hasbro to produce A GIG Tiger in
honor of our beloved Sonic.
The sad news is that, although the pandemic has
brought golden business to the gaming world, the
ban on assemblies has wiped out the "arcade" sector.
Sega Sammy Holdings, a very famous sector in Japan
for caring for the arcade, arcade and games room
department, said it had suffered a significant decline
in turnover.
Shukan Famitsū is the most important and respected

Fig. 2 - Capcom Retro Station

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 57 of 86

RETROHISTORY

video game magazine in Japan, it mainly contains
reviews and news from the world of video games
and recently published the painful news of Sega:
the sale of 85% of the shares to GENDA INC.

We all hope to be able to play in the future the
magnificent Japanese cabins inside Tokyo, still
branded Sega, but Akihabara's famous Sega
building will disappear from the crowded street of
electric town.
Will Laox be happy?
Or maybe Bic Camera?
I don't think so.
I think the building behind Sega, which houses
Super Potato, will also be very sad.
Who knows what happens to the Akihabara
Building Sega and the nearby VR area Sega?
(see Figure 3)

Japan is famous for reinventing itself and for being
reborn from its problems and defeats. It is not at
all unlikely that a competitor company (not an
enemy, but only positioned in a congruent slice
within the same marketing sector) will reach out to
15% of Sega.
Or will Microsoft reach out? If Microsoft decides to
join Sega, after courageous marriages with
Bethesda, Ninja Theory, Playground Games,
Obsidian, it would only mean that the "PlayStation
monopoly" should review the entire Sony home
organization and operate more surgical actions in
its immediate future!
In the meantime, I attach a link for a pleasant

reading about the future video game world:

https://www.everyeye.it/notizie/microsoft-saw-
marriages-ha-fare-new clue-greenberg-483922.html

Last indiscretion: in 2021 there will be important
news regarding Sonic.
I repeat it from several RMW issues: the G&W world is
not the end nor the world of retrogaming.
It is obvious that even Sega is transforming, the
epidemic will allow the Japanese ability to invent
something genius, to fuel a completely new and
revamped post-pandemic marketing.
Aren't the same streets as the cities a year away?
We will never find shops, signs, directions and
buildings identical to the previous year in which we
visited Japan.

That's it, that's all. Stay tuned, a powerful rebirth is
at the gates of Japan: a bursting return to feed us
faithful consumers and collectors.

See you soon, all the best wishes for Happy Holidays!

Fig. 3 - Tokyo, Akihabara district

https://www.everyeye.it/notizie/microsoft-sega-matrimonio-s-ha-fare-nuovo-indizio-greenberg-483922.html

Page 58 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

RETROINTERVIEW

1 - Intro

Who remembers The Day Of The Tentacle? Surely, many
of our readers will have a good memory of it. For the very
few who do not remember, it was a point & click adventure
by LucasFilm Games, also known as Maniac Mansion II,
based on the equally well-known SCUMM development
engine.

What is not as well known to the public and to many
retrogamers, is a little story about DOTT's crack, which
we want to tell you below, a story that speaks about the
competition between cracking scene groups of the 90s.
The competition was all about fame, respectability and
technical skills of the several members of the scene. Those
who first managed to remove or overcome a video game
protection gained notoriety and respect, in addition to
the right to "defame" or mock other groups in .NFO text
files that came with the cracks.

In DOTT's case, the story went something like this: it seems
that Hybrid's people didn't have the necessary skills, so
at some point they gave up. Even the Swedes couldn't
crack the game. They even came to declare it "uncrackable",
perhaps to buy some time on the other groups, discouraging
them from participating in the competition and still trying
to be the first, continuing to work hard on the crack. But
this was one of the tricks well known to everyone on the
scene and unanimously considered unfair.

So, at 9:40 on June 12, 1993, a member of Hybrid wrote
this message: "Okay guys, here's the first disk of DOTT!
So stop bitching. Yeah, that's right, it's a pain in the ass,
so now we've all given it a fair chance to try, I think! There's

probably more copy protection after that SPECIAL BATTERY
shit, so try to figure something out! - Hoson/Hybrid 1993
(pissed, tired, cool, heavy, death metallist). P.S. At least
we're men enough to admit our own defeats! P.S.S. We're
still working on it!"

Meanwhile the team Razor 1911, European division (of
course!), at 7:33 on the same day (June 12), CET, received
the following note, written by a cracker acting under the
nickname Randall Flagg: "Day Of The Tentacle - Maniac
Mansion II - Cracked by Randall Flagg! Note: --- for public
use--- '

Yeah, that's pretty clear, so at least it looks that way. But
guess what? That's right, the race wasn't over yet! Other
scene fellows, from the legendary group The Dream Team,
and more precisely Dr. Detergent/TDT [R.I.P. :- (], seem
to have already solved the game at 13:48 on June 11.
Their NFO file reads, "We were focused on the game and
we knew we would make it, but not WHEN! Finally now,
your favourite cracking team has made it again! And a
nice clean CRACK came out! TDT has nothing to do with
charity and posting a crack patch would just be like giving
the release to another group! After installing the game,
be sure to copy the DOTTCRK.COM file and launch it EACH
TIME before you start playing! As you read from the NFO
from HYBRID, they told everyone it was NOT cracked so
that means everyone could crack the game, but TDT came
first!”

So the question here is WHERE the game was cracked
(considering only Razor 1911 and TDT), discover the
correct time zone and determine WHO came first to the hit!

To understand the level of competition between the different
groups, let’s take a look at the file .NFO from another team.
This time it was the GENESIS*PROJECT, a part of the
legendary group that operated on the C64 scene, which
proudly continued to occupy a prominent place on the
scene. On June 12, 1993, at 7:03 pm, Snacky/G*P wrote:
"Well, we certainly had some problems inside GENESIS
and also with some lamers who claimed to be members
of G*P, but now I'm really proud to introduce you to a
crack-patch for this fantastic game... It took me a few
hours to develop it and I hope you all like it! Hey, you guys
from TDT, what's going on with you...? Nice release eehhhh,
another #6 disk release to spread around a crack-patch
that DOESN't work… hahahah! Hey, you guys from Hybrid,
what’s on... Before you give up and say this game CAN't
be cracked, next time wait a few more days and there you
go! Be sure to grab the new trainer programs and releases

Exclusive interview with Randall Flagg
 Phreaker/cracker/hacker of the international DOS/Windows scene in the 90s and 2000s

by David La Monaca

Fig. 1 - Randall Flagg aka Antonio Mazzanti

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 59 of 86

RETROINTERVIEW

from your favorite 1993 entertainment group!"

So, even though the time of the messages reveals everything,
this seemed to be the ULTIMATE crack-patch, not just any
bugged release. Knowing Snacky's skills, no one doubted
it, but comparing the time of the patch file, Randall Flagg/
Razor1911 was the first to reach the finish line, followed
by the others. But don't forget that the crackers were also
thoroughly testing the game, thus controlling the protection.
After all, it was a game that used a fairly sophisticated
protection that was activated during the course of the game,
proceeding along the plot. This important fact seems to go
beyond the issue of the release time to determine who really
came first to the COMPLETE crack of the game.

So we could conclude that G*P had fully won the race. But
there is a problem: in the crack file of G*P called GENESIS.GP
(the crack consists of two small files, DOTTCRGP.COM and
GENESIS.GP) you can clearly read: "RAZOR/Maniac Mansion
II". Maybe it doesn't mean anything, does it? The only one
who could really help us settle the matter would be Snacky
himself, a cracker from the C64 scene who was really skilled
and respectable, one who never stole a crack: it would have
taken much longer than cracking a game all by himself.
Unfortunately, we don't have a direct testimony from Snacky,
but we found a comment from Randall Flagg dated 2016
on a thread dedicated to this crack: "Hey… I can only say
it was a lot of fun to crack!"

Some claim that Snacky was a member of both G*P and
Razor at the time... But the last word on the whole story is
provided by Randall Flagg himself: "I can only add that in
my crack file I also changed the text in which Dr. Fred
triggers the protection by asking for the ingredients of the
super battery (the ASCII text was masked via XOR as for
other single-byte LucasFilm games, perhaps 0x69h if I
remember correctly). Crack would completely erase that
scene with Dr. Fred, letting the player through without
requiring anything. But it also did so in case the player later
looked at the battery plans. Nothing that complex. If I'm
not mistaken, two or three other groups announced their
crack, even 2-3 days later, and then they were wiped out
virtually everywhere. The RAZOR version is the only one
that can still be found around, even on torrent files. :)".

Conclusion: Randall Flagg's crack was the first to appear
chronologically and was also ALREADY COMPLETE!

So let's go meet the author of this and countless other DOS/
Windows game cracks from the 1990s and 2000s. Italian
readers of RMW will be proud that one of the most authoritative
and skilled crackers in the whole cracking scene was their
fellow countryman Randall Flagg, a.k.a. Antonio Mazzanti.

2 - .NFO

DLM – Hi Antonio and thank you for accepting our invitation

for an interview. As we tried to explain in the introduction,
you are a little-known character outside a certain circle
of techies, hackers and IT enthusiasts. Yet many of those
who are now reading this interview owe you the chance
to have been able to play those PC DOS and Windows
titles of the 90s that had a particularly articulate and
difficult protection to overcome. In addition to the
aforementioned DOTT, just think of the series of graphic
adventures by LucasFilm “Monkey Island” and “Indiana
Jones”. So we ask you to briefly introduce yourself and
give us some news about yourself.

Thank you for the invitation. I'm not a guy who loves to talk
or write about himself. When asked to tell about myself or
my experiences in a formal way I often decline. I prefer a
friendly chat, like you and I are doing right now, albeit in
two different cities. I was born in Florence in 1972, I had
a good childhood and I had a very strong and intelligent
mother. All normal with primary school, then in high school
I chose Accounting for Programmers, a choice more dictated
by the desire to find a way to learn how to use computers
in school. Obviously I've learned something, but to be
honest, I have to admit, I've basically done everything
myself. Driven above all by my innate curiosity, I always
wanted to know what was behind the games and software
I saw running on the computers I gradually owned. I have
always been (and still am) interested in both hardware and
electronics, as well as software and programming. After
high school, I also booked myself in college, but I never
finished it, I always felt myself too far ahead, eheheh.

DLM – Have you always been a computer enthusiast since
you were a child? What attracted you to the magical digital
world?

I can't say I'm a “fan” even today. As a kid, no electronics
or computers until a ZX Spectrum came into the house, my
first computer, bought by my far-sighted mom. Obviously
I immediately looked for games and then slowly started
experimenting with programs in BASIC. My first test was a

Fig. 2 - Antonio in 1993 on the phone (note the trusty
US Robotics HST modem on the sideboard, the chaotic

PC workstation, and the drumsticks)

Page 60 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

RETROINTERVIEW

program to print the multiplication tables. The FOR cycle
was enlightening to me and from then on I realized that
that world was for me. I've only been interested and working
with electronics for about ten years now and I've been
reversing practically forever. At first I was attracted to intros
that appeared on pirated copies of C64 diskettes.

DLM – Tell us more about your first computer? Do you still
own it or have you taken many more over time?

My mother had a clear vision of the future of her children
and for me she had thought about English and computer
science. So as a boy I had a long study stay in England that
later was so important for all my digital adventures and my
professional life. One day a 16KB ZX Spectrum, complete
with Philips cassette recorder, arrived home thanks my
mom. I don't have it anymore, but in time, I practically
bought back all the retro-computers that could arouse a
little nostalgia in me, eheh.

DLM – When did you start getting interested behind the
scenes in programs and games? That is, when did you
start discovering machine language and assembly?

When Maniac Mansion was released for C64, I became
passionate about it but, proceeding in the adventure at
some point my copy didn’t work. I was stuck and I couldn't
see what was going on in the rest of the game. So I took
the same game on PC DOS version. I was about 15 years
old and discovered that through a simple debugger I could
see what a program or game loaded into memory was doing.
In high school I had experience with COBOL and its runtime
module. I had learned the difference between interpreted
and executable programs. So, using Turbo Debugger, I was
able to find the JMP statement that I needed to bypass the
protection. I remember that moment was particularly
exciting. From then on I was also interested in the other
games by Lucasfilm, including The Secret of Monkey Island
and The Day Of The Tentacle, but by that time I had already
switched to a more sophisticated and complete debugging
tool like Soft-ICE.

My first real crack was for Motocross, a DOS game, for
which, I remember, it was enough to strategically place an
unconditional jump (basically only one byte). DOTT's crack,
on the other hand, was among the most complex to deal
with. Among other things, the protection was of two types:
one at the beginning and the other during one of the phases
of the adventure. Surely it was not enough to use some
well-settled jump opcodes, DOTT made use of a stack
machine to be circumvented with a series of push/pop and
comparison opcodes. Not surprisingly, only a few groups
tried to find crack and I was the first to post it around.

DLM – At the time there was no Internet, at most some
very slow modem connection to BBSes. How did you
actually learn to juggle programming?

I'm a complete self-taught. At the age of 14 I collected my
savings and went to the University Library in Via San Gallo
in Florence and ordered two books on the assembly
8086/8088 and 80386, obviously both in English. They
were my gateway to low-level programming and understanding
the protection routines I encountered on DOS games and
programs.

DLM – In addition to the world of 8-bit and 16-bit computers,
we know you've always been attracted to the world of
telecommunications. When was this passion born that
pushed you to browse telephone networks?

After joining the RAZOR 1911, I started exploring the world
of telematics and the goal was to be able to make free calls
everywhere so that I could communicate quickly with the
other members of the group and to connect to the BBSes
around the world. It was a question about racking your
brain and squeezing your heads to discover the most
unthinkable and creative methods of attacking phone
systems and networks. Of course, I can't go into too much
detail. ;-)
DLM – At some point you came into the cracking scene by
joining groups on the Italian and international scene. Among
others let’s remember Dead Memory, Razor 1911, Eclipse
and Hybrid. Names that remind many of us of carefree
afternoons spent playing crazy titles and sometimes real
masterpieces. How did you get into this universe, make it
a little bit your way of life?

In the early 1990s I worked for a computer shop in my city
and at SMAU in Milan I met some guys who were part of
the Dead Memory who introduced me to the Italian cracking
scene (basically the few productions of local games concerned
Simulmondo titles and two or three more software houses).
They were looking for crackers, so I started cracking games

Fig. 3 - In the foreground Sector 9, the founder of Razor
1911 at dinner with our Randall Flagg

(left in the background)

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 61 of 86

RETROINTERVIEW

in Italian for them. Some of these titles such as 3D World
Tennis, released in November 1992, could also be interesting
for other foreign groups. So I started accessing BBSes and
exploring that new world by uploading the cracks of Italian
games. One day I uploaded the “Indiana Jones and the Fate
of Atlantis” adventure crack. I was noticed by the leader
of the Razor (a.k.a. The Renegade Chemist) and, since
Lucasfilm games were considered very complex to unprotect,
he contacted me and offered to join their team.

DLM – Can you tell us about the atmosphere breathed in
those days, when you were splitting between phreaking
and cracking? How were you technically and logistically
organized?

The organization was basically very simple: when a game
needed a crack, the supplier (the one who provided the
original) called through bluebox, credit card or other
methods the first available cracker, who proceeded to
download the game directly from the supplier. Then he tried
to crack the title and if he could, he would write a file .NFO
(a text file) with notes needed for distribution. The supplier
then phoned the so-called "couriers" (distributors) and the
cracked game quickly ended up on all our BBSes. From
these, other freelance couriers uploaded it on the BBS of
other groups. The HQs (Head Quarters) of the other groups
had priority, so they could put the "seal" on the release. In
all the steps he communicated mainly by phone or with
messages on the HQ.

DLM – Going back to your training, how was your university
experience? Were you able to study, work and engage in
phreaking/cracking activities?

Well, yes, after graduation I attended university for three
years, first in Pisa and then in Florence, but honestly the
courses were a little tight. I thought they were talking about
a past world. Everything I learned, I learned in the field,
experimenting and staying in touch with other crackers of
the scene, reading books and consulting technical
documentation found on the BBS and then on the Internet.

DLM – Our magazine mainly deals with retrocomputing
and retrogaming. Do you remember the first videogame
you played? Do you still like using the physical hardware
of the past?

I don't remember exactly the name of the first game I loaded
and played on my home computer. It must have been a
game for the Sinclair ZX Spectrum. I remember a Pong
clone that my mother bought. Today I often use Amiga (the
1000, 500, 600, 2000 and 1200 models are all in my
collection) and also many of the 8 and 16 bits of the 1980s.
And even today I enjoy cracking MS-DOS and Windows
games using real hardware (a 386SX PC and a 200 MHz
Pentium).

DLM – We also know that you do electronics projects by

profession and also do repairs of old machines for friends
and enthusiasts. After so many years, do you still enjoy
getting your hands on cards and motherboards from so
many years ago?

Sure, sure. The basic idea stems from the desire to pay
tribute to those who designed and built those machines!
Seeing them still at work today gives you the creeps! I often
repair the old home computers that I find around and then
give them to friends and acquaintances. Or I fix those of
friends who ask me for help.

DLM – Can you tell us a particularly compelling anecdote
among all those that you surely have in your memory
concerning phreaking activities (if you can tell)?

Eheheh... that's a question that brings back a thousand
memories and a thousand stories in my memory. Stories
too long to tell here, but I do not exclude taking some to
the next OUAS meeting in Rome, as happened at the end
of October at the OUAS 2019 in Milan.

DLM – What about any stories about your cracking business?

An interesting story to tell would be about a well-known
programmer/designer and screenwriter of Lucasfilm Games,
who during a meeting a few years ago forgave me for
cracking his games (see photo of the message that he sent
to me). For other episodes I invite everyone to watch my
speech at the latest OUAS 2019, recently published on
Youtube [R5]. I’m pretty sure you'll enjoy it! (Warning: the
speech on YT is in Italian, probably you can activate English
subtitles.)

DLM – How did you choose the titles to crack? Was it your
free choice, or was it just what the suppliers provided?

Well, the organization of the groups was actually pretty
strict. It all depended on a clear hierarchy. The cracker with
the best reputation in the group was consulted first, then
the others were called. But it often also depended on the
name of the software house or publisher of the game to
crack. A new game by Lucasfilm or Sierra always went to
the best cracker in the group. A matter of prestige and respect.

DLM – Have you ever participated in coding an intro or

Fig. 4 - OUAS's De Gregorio (left) and Mazzanti (right) in
a 2018 photo with a well-known Lucasfilm Games

programmer/designer

Page 62 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

RETROINTERVIEW

keygen of a game or program cracked by your group?

I worked on several keygens, for example the one for the
1:1 game via LAN that controlled the serial numbers of the
games connected to each other. As for intros, I don't
remember ever writing a single line of code. Sometimes I
still write keygens today, but now only for fun and a bit of
academia. And obviously I don't disclose them.

DLM – When faced with protections, what was the strongest
motivation you felt in taking up the challenge?

The goal was always to be the number one, the best, the
most skilled on the scene and bring prestige to the group
I was part of. Because when you reached certain levels,
you automatically got respect for others and you could
even afford to mock other groups, send them ironic greetings
on the files .NFO and even in some cases fuck with the so-
called "lamer crackers".

DLM – Do you remember which software tools you used
at the beginning, when you took the first steps in cracking?
How have they changed over time and what are the current
and modern ones?

I used Borland's Turbo Debugger at the beginning. Then I
switched to Soft-ICE for DOS/WIN, then Sourcer and
CodeView. Nor did I disdain the use of the simple debugging
tool included in the DOS. Then I learned to compile with
the TASM (Turbo Assembler) and as an editor I often used
HexView. Nowadays, I use IDA/GHIRA as decompilers and
OllyDBG and X64Debug as debuggers.

DLM – Still remaining in the ranks of legality, do you have
any stories to tell us about some purely hacking venture
in which you participated?

There are several of them. One of the most interesting is
the System75 control units, telephone devices in use in the
United States that contained 1200/2400 bps modems.
These electronic devices could be connected and hacked
(sometimes even with default factory passwords). If the
hacking was successful, you could even create new phone
numbers to use at will. You could also create PBXs to use
to call other numbers (typically used to make long distance
calls). In practice, you could make local calls (free of charge)
and then bounce off PBX to call domestic or foreign numbers.
The funny and really cool thing was that you could also call
the 700 numbers to create real conference calls with
reserved access (through a PIN code). In the end, this is
how free audio conferencing was organised to coordinate
us within the group or to call anywhere for free. The quality
of the calls was often very good and we also used System75
to access BBSs around the world.

DLM – As mentioned in the introduction, you occasionally
attend events to bring and preserve your experience in
the phreaking/cracking/hacking scene. We at RMW were

able to appreciate your speech last October in Milan,
especially for the curiosities and the juicy anecdotes you
told. The previous year, at OUAS 2018 held in Rome, you
even held a workshop open to all in which you gave more
technical information and challenged those involved to
crack a specific game. How did you come up with this idea
and how did it go?

I was asked to participate in OUAS 2017 to perform a classic
speech but I proposed a real live cracking session. In
practice, I showed cracking the protection of a game
"live" (in detail it was Eric Zmiro's Prehistorik 2). On that
occasion I armed myself with an old 386 laptop and
performing everything live, including the problems of
interfacing the VGA port with the screen and projector, I
went through an operational analysis and the implementation
of the crack patch.

We repeated the experience at the 2018 event, in which
the cracking session turned into a real workshop attended
by a good number of participants. The workshop sessions
were about Zak McKracken's and Maniac Mansion's cracks
while the actual exercise for the participants was about
building the crack of “Loom”, simply using an appropriate
debugger. I believe that the 2018 workshop was a unique
event in Italy and perhaps also in Europe. The practical
implications and technical elements touched upon during
the sessions by the many participants, judging from the
feedback received, proved to be very interesting and
extremely educational.

DLM – Back to hard and pure cracking. Has there ever
been a protection you really couldn't get over? And the
one that, after you got over it, really impressed you with
the brilliance of who invented it?

No, I don't remember ever running into anything ‘uncrackable’.
Sometimes it took more time to overcome the protection
built by programmers or real security experts hired by
software houses, but I've always figured it out. :-)

Among the most difficult protections to get over I must
mention those derived from the Protection Kit by Eric Zmiro,
author of several PC/DOS games (including Prehistorik 2).
Zmiro's protection was undoubtedly the best system I've
ever seen. I remember he gave me a lot of trouble at the
time and I wrote a complete unwrapper to try to get over
it and there are still some parts of his kit that have remained

Fig. 5 - The message of forgiveness received by a
Lucasfilm designer

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 63 of 86

RETROINTERVIEW

unsolved. I was in touch with Eric a long time ago, and even
though he's always stuck to his hatred of all the crackers
in the world, he even sent me an original copy of his software.

DLM – Do you still sit on your PC and try to crack modern
games? Or to re-crack old titles, complete them or make
them even easier for players?

Yes, I often do, although there is always little time to devote
to these activities. I still receive many requests from friends
on Facebook or from various MS-DOS groups. Do I crack
modern games on PCs or other platforms or consoles? No,
thank you, I categorically decline.

DLM – Over time you have certainly accumulated an
impressive amount of information, techniques, know-
how, etc. Have you ever thought that this whole mine of
information should be preserved in some way? Without
getting caught up in the stitches of the law (although at
least in Italy you should enjoy some article related to
prescription...), is there any way in your opinion to preserve
all this information?

In due proportion, I would compare my skill and accumulated
techniques over time to those of a surgeon or a craftsman.
It is difficult if not impossible to describe the skills and
techniques that are put in place to overcome or remove the
protection of a game or program. It’s even harder to write
down things like intuition, creativity, or observation skills
when using a hexadecimal editor or reading assembly code
from a debugger. If this were possible then one might think
of digitizing human imagination or creativity, which I find
rather complicated at the moment. :-)

It was interesting to hold a workshop at OUAS 2018 in
Rome. In that context, some basic principles and methods
can be shown. Other information is difficult to transmit
except with frequent attendance or direct contact with
those who aspire to learn. Hacking is not exactly a subject
of study. Yes, techniques can be classified, but for that any
of the volumes dedicated to these activities is fine.

DLM - What do you think are the must-have references
on the Net and not, that every good cracker or phreaker
should consult or keep in their personal collection?

The Net is full of texts and books that talk about hacking
and in some cases also cracking and phreaking. They are
complex and articulated subjects, in reality, impossible in
my opinion to enclose and box in books and tutorials. I
always advise those who want to get closer to this world
to get the book "Programming the Intel 80386" [R6] and
start reading.

3 - Outro

DLM - One final question: why did you choose "Randall
Flagg" as your battle name in the cracking scene?

I've always been a passionate reader of Stephen King's
books. At the time "The Shadow of the Scorpio" struck me
a lot and one of its darkest, wicked and ruthless characters,
then turned into a synonymous of absolute evil in many
subsequent books, was just...

There would still be a lot to ask, a lot to remember and
perhaps a fixed address book on RMW full of anecdotes
and curiosities with all the stories that R.F. could still tell
us would not be enough. But for the moment we stop here,
warmly thanking Antonio Mazzanti for his openness and
sympathy. It was really fun chatting and remembering with
him the old days of the '90s cracking scene. Don't forget
to watch the video of Antonio's intervention at the latest
Once Upon A Sprite 2019 [R5]. It’s definitely worth it.

References

[R1] RAZOR 1911 official website - https://razor1911.com/
[R2] LucasFilm Games - https://www.lucasfilm.com
[R3] Snacky and Rubicon: https://ready64.org/articoli/
leggi/idart/102/rubicon-rivelato
[R4] Eric Zmiro's Best Protection Kit: http://
fabulousfurlough.blogspot.com/2008/08/eric-zmiros-
best-protection-kit.html
[R5] OUAS 2019: https://www.youtube.com/watch?
v=wec5tt9OPN0
[R6] Programming the Intel 80386: https://archive.org/
details/programmingintel00smit

Page 64 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

RETROINTERVIEW

“This is a dominant force of the underground world at the
head of a legion of evil demons. The purpose of this is to
invade and conquer the world of the living.”
Dr. Egon Spengler

A few days ago, I got a notice on FB that stunned me. The
Italian page dedicated to Ghostbusters talks about the
future release of "The Real Ghostbusters arcade fangame”.
Obviously I rushed to see what it was and the amazement
turns into "I must try this game!!!”.
A mix of Metal Slug and Columbia Pictures' beautiful TV
series. Excellent.
So I view the pictures and a small video and then I decide
to write to the developers immediately.
And here we are with a new interview with Giancarlo
Schiano, a piece of the heart of this developing game (the
other part of the heart you will find out who it is, A/N).
An exquisite person with whom you can talk about everything,
but above all a big fan of the ghostbusters and the TV series.
Here follow the questions and the pictures of the game.

Nith - Hi, introduce yourself and present your project to
our readers. Who you are and how the development of
this game was born.
Giancarlo - First of all, thank you for this interview, which
is an honour for me, a pleasure to do with you and present
the project to your readers. My name is Giancarlo, I am
33 years old, I live in Ravenna and I have always, since I
met them, since I can remember I am a crazy fan of The
Real Ghostbusters, more generally in the world of ghost

catchers but in particular I have followed with great passion
the television saga of the heroes of New York. They always
kept me company in the afternoons as a kid, they made
me dream a lot because they expanded the world of ghost
catchers beyond the film, giving new adventures and above
all they gave you maybe some teaching, because for us
boys of the time cartoons were a vehicle of instruction.
And for me all this was why I decided to create the video game.

Nith - What sparked the creation of a GB arcade games
in the style of Metal Slug?
Giancarlo - The stylistic choice to combine a cult game
like Metal Slug with The Real Ghostbusters was born from
the fact that many years ago, during my twelve years of
age I spent the summer with a cousin of mine and he
invented an incredible excuse to attract my attention and
passion for the TV series. He invented a program with
which you could edit the characters and enemies of a game
to your liking. I already imagined creating Egon, shooting
with the flow against ghosts, against zombies, mummies...
then, of course, it turned out to be a colossal “bale” and
this has left me over the years a small/large void inside.
As a fan he left me this void and I wanted to fill it, years
later, myself. Obviously we have taken inspiration from
design, but we have completely recreated everything you
will see in the finished game.

Nith - What system are you developing the game with?
How many of you are on the development team?
Giancarlo - I want to tell you that there are two of us. Only

The Real Ghostbusters Arcade Fangame
Interview with Giancarlo Schiano and preview of the game
by Carlo N. Del Mar Pirazzini

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 65 of 86

RETROINTERVIEW

in two. Two people who have spent their free time creating
this game for two years. Two people, Morgana Zaltron,
who is my partner and I. She's the code writer and I'm
the designer, dealing with graphics in total. We are
developing the game with Game Maker Studio 2. I always
thank Morgana for the work we're doing. The game at
present is between 80 and 90% of the final realization.
We're working on the final code optimization.

Nith - What platforms do you plan to consider and what
kind of player target you have in mind (i.e. the game will
have an old-fashioned arcade imprint or be more similar
to modern products in terms of playability)?
Giancarlo - The game will be entirely “OLD-FASHIONED”.
Do you know the first Metal Slug in the early 1990s where
you spent capital to finish it?? Well, that's exactly how it's
gonna be. There will be no special effects, there will be
nothing of the dynamics of the current games. It's all
purely retro-arch. Classic! In some places it is also “tricky
to play”, but it is the beauty of historical arcades, where
you had intrinsic difficulties during the game that did not
make your life easy and that created the challenge. The
desire to see even more, to get better. This was our idea,
our imprinting to create the game.
For the moment we do not plan to do it on other platforms
(remember the game will run on Windows systems, ndN)
because we still have to close the game on PC. So our first
step is to close it and make it FREE for everyone. Then if
we can convert it and bring it to other platforms and
devices for us it will be a plus that we reserve the right to
do but do not guarantee at the moment.

Nith - Exit forecast? What outreach platforms do you
want to use?
Giancarlo - I don't really think we're going to spend a
penny on advertising! Let me get this straight. It's a game
created by fans, me and my partner, for fans. We hope that
the fandom linked to the series is so proactive as to do it
himself by means of dissemination, by advertising for this

project. We don't ask for anything. We donate it. Together
with the game we are donating three years of our life and
passion for this game and for The Real Ghostbusters
without having anything in return but enthusiastic fans.
And there's nothing better than an enthusiastic fan as a
means of outreach!
As far as exit is concerned, we hope to get it out completely
by mid-2021. Consider that we have been working on it
since 2018 and it is becoming a necessity for us to close
it. And to close it I intend to make it a playable product as
soon as possible.

Nith - Tell us about the game itself. What about the
gameplay?
Giancarlo - As I told you, it reminds you of Metal Slug, so
imagine the game with The Real Ghostbusters themes.
The entire game is a gigantic cameo of everything seen
in the TV series and all the Kenner toys that came out after
the TV series. We have also hidden numerous Easter Eggs
of films that year made the history of cinema of the 80s/
90s. I leave your imagination free. To wrap up the Gameplay
thing, let me tell you something... I'm doing a little spoiler.
There will be 5 levels plus an extra selectable from the
menu called ECU (i.e. the ecto container) that will be used
by players to visit all the entities they have captured within
the game. A kind of Wall of Fame where the character can
“interact” with the entities he has defeated within the
game (and not only, ndN), just as it happens in one of the
episodes of the cartoon, the one dedicated to the Christmas
story by E. Scrooge by Charles Dickens (at this point in
the interview Giancarlo unveils his knowledge of The Real
Ghostbusters telling me the episode perfectly. This guy is
a real ghost catcher encyclopedia! NdN). Each level has
a different title. Each level is dedicated to a particular theme.
The first is dedicated to a particular enemy of Egon, fans
will understand and be enthusiastic! The second is dedicated
to Ecto 1, in the background of New York City. Here we
will find the enemies of the animated series and Kenner toys.
The third level dedicated to Ecto 2, or flying in the skies

Page 66 of 86 RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5

RETROINTERVIEW

of New York.
The fourth level will be dedicated to an infested villa and
will take us to the sewers of New York, already seen in the
film Ghostbusters 2. And we will find ourselves at the end
of this level facing four opponents within the ghost dimension!
The fifth and last level... the final level. But that's all I'm saying.

Nith - Do you have a campaign to help support you?
Giancarlo - The problem here is very serious. We know
that we are going to interact with a registered trademark.
A brand that belongs to Sony and Ghost corps and we
cannot ask for funds or crowdfunding to support the
project, but we can leave open to donations the opportunity
that any fan can make to support the project. But it's just
a donation that would go to help support living expenses
for development. In this sense we do not have and I do
not want to create a campaign in this sense. We want our
fans to be delighted by the product and its being free.
Hopefully it will bring the fans back to a happy time, given
the terrible time we're going through.

Nith - Thank you for your answers. If you want to add
something, feel free to say what you want.
Giancarlo - Meanwhile I want to thank Morgana, without
her the project could not have gone ahead. I want to thank
the fans, true supporters of the project. In less than 4
days we have had almost 2000 followers, an unexpected
thing and this proves the fact that word of mouth is more
important than paid robotic advertising.

I thank you from Retromagazine World for giving us the
space to talk about it, because it is wonderful for me to
share for free something that was part of my childhood
and that, in part, made me what I am today.

Having said that, I conclude with a personal reflection:
Given the follow-up that a small project like this has had
and is having on so many fans of the series and not fans,
I have to say that budgets are not important, the money
invested is not important but the heart and love that people
put into it. Too often I see games with very high quality
levels on a graphic level but with a poverty of plot and
abysmal gameplay (and this is pure truth, to be printed
on immortal boards. NdN). Finding a very old, in some
ways cumbersome style of play, perhaps light years away
from what is found in our consoles and computers today
but still so appreciated makes us understand that, in the
end, it is not the graphics, but the love, the passion, of
putting every drop of effort into making everything perfect.
For example, the game of Ghostbusters released in 2012
was very successful because you could see a continuity,
a spasmodic love for the brand and for the characters.
Nothing was left to chance.
The opportunity on this brand, on The Real Ghostbusters
are endless, we fans hope, I first, that it is taken up. That
it can expand and that it can have the same impact that
it has given us in the past to the new generations.

I think we can stop here. Thank you. I want to make a
small announcement, in addition to this playful project,
we also have the film “THE REAL GHOSTBUSTERS – THE
FILM”, unfortunately stopped because of COVID, but we
are ready to start again and carry it forward. Again you
will find all the information on The Real Ghostbusters Live
Action page. I am actively involved in the role of Egon.
Thanks again to all of you and who knows, if fans will
appreciate it, in the future the project could also have a
follow-up. Make it a job? It's hard for now, but who knows?

We thank Giancarlo and Morgana for the work they are
doing and for this comprehensive interview.

We invite you to follow the project on facebook at The Real
Ghostbusters Arcade fangame page and leave you to the
beautiful images of the game.
Personally, I can't wait to get my hands on the game and
test it as a fan of movies and the TV series.
I'll leave you with a quote from the TV series.

“Remember, if you're not afraid, he can't hurt you. ”
Winston Zeddmore

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 67 of 86

RETROINTERVIEW

Page 68 of 86 RETROMAGAZINE WORLDENGLISH YEAR 2 ISSUE 5

GAME PREVIEW

It's not often that you get to talk about retrogaming and
get some exclusive news to share. If a hardware is retro,
by definition, it is out of production and rarely receives
releases of new video games. Although some machines
enjoy a renewed youth, we are used to trying the new
games once finished and published. This time we will make
an exception.

Leonardo Vettori (graphics and gameplay) is one of us,
from the RM Team, and is not new to the retrogaming world
even as a developer. Remember Core 447/448? Retrieve
issues 16 and 17 of this magazine (as they are always in
the archive downloadable for free). Assisted by Kees Van
Oss as programmer, Pedro Pimenta and Mario Fanciulli
to the music, the team of wonders launched on the idea
of a new platform for ZX Spectrum, with exceptional
graphics and innovative concept design.

In Metamorphosis everything revolves around the concept
of evolution. We will start the game with a being resembling
an arachnid and a very limited energy bar. We can move

in both directions (right and left), jump or hit enemies
with a particular spit attack.

The aim is not to kill them, but to bring them back to the
previous state of existence, weakening them suddenly
until they degenerate into worms and we will be able to
eat them (thus regenerating our energy bar).

Initially the maximum number of energy points available
to us will be very limited but with the game progresses we
will be able to recover objects that, if placed within the
energy radius present in the central room, will increase
the maximum value of the energy bar, in addition to
approaching the conclusion of the stage.

After a certain threshold, we will evolve into a human-
arachnid mix, “and this is not even my final form” (a well-
known Villain would have said), but aware that any blow
immediately could lead us to go back to the previous form.

Why evolving?
First of all because it is the purpose of the game to become
real children (today I have taken the quotations well) but

Metamorphosis (ZX Spectrum 48kb/128kb) - PREVIEW
 Evolution takes a step forward
 by Starfox Mulder

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 69 of 86

GAME PREVIEW

in terms of pure gameplay evolution will lead us to concrete
advantages that I am not going to describe to you because...
I only played (and finished) the Demo version.

In the version of Metamorphosis made available to me
and finished on real hardware you can only conclude the
first of the three levels that will then be present in the final
version, so my judgment is concretely limited to what is
worth “tutorial level”.
Enemies are intelligently programmed and do not just
attack us but also fight each other, sometimes evolving
in front of our eyes after eating an opponent and becoming
more threatening referrals.

I never remember this element being introduced into a
game for Spectrum and it gave me great pleasure. The
graphic impact then, as mentioned earlier, is among the

most incredible things I have ever seen on the machine
in question. Music is an excellent accompaniment and to
finish the gameplay shows no side of any concrete
criticism...except perhaps that of not being an original
game system, but you have to explain it to me how to
create something revolutionary for a computer having 38
years on its back.

In its proven dynamics, Metamorphosis still offers its best,
leading us to alternate exploratory scenarios with pure
combat stages, unlockable with special keys to be found
along the levels. All with fixed screens, all capable of
running perfectly on a 48Kb (but if you want music you
need a 128Kb).

So what can I say in conclusion?
Leonardo is a friend and he asked me to be ruthless, but
given the product that has been made available to me it
is really difficult to find a defect. Too easy? Yes, obviously,
but this is the first stage, I'm sure they'll raise the bar for
the competition in the next two.

What will certainly not change is the sense of wonder
effect due to an original and well-kept setting, capable of
plunging us into a primitive-gygerian delirium never seen.

This is by far the game that created me most awaited
(A.k.a. Hype) in the last period.

Page 70 of 86 RETROMAGAZINE WORLDENGLISH YEAR 2 ISSUE 5

GAME PREVIEW

"A Musical Journey"

Original article Simone Battaglioni,
reissued for RMW by Gianluca Girelli

Loom is a historic video game from
Lucasfilm Games released in the 1990s
on many platforms. The review refers
to the Amiga version.

Synopsis
With a gloomy medieval fantasy
atmosphere, Loom's story tells the
journey of a boy belonging to the
"Guild of Weavers" to discover himself
and what happened to his people. He
will soon find himself involved, in spite
of himself, in saving the fate of the
kingdom.

Development
In the game we play Bobbin
Threadbare, and our journey begins
by learning the first rudimentary
notions of how to apply the art of
weaving. After leaving Loom Island
and landing on the mainland we will
meet the other Guilds, including those
of Glassworkers, Shepherds,
Blacksmiths...

Of some of them we will only hear the
name, others will be more involved.
We're also going to have some bad
fights, including a hot female dragon.
We'll discover a variety of hidden
secrets and explore cities.
Finally, we will stop Evil and its evil plan.

Content of the various editions
As was used in the 90s, Loom was
sold in a cardboard box with
representations and a medieval fantasy
style, with the "Book of Patterns"
inside where you can write down the
sequence of notes to be repeated in
the game (explanation later).

These sequences of notes were not
always the same in order to increase
the longevity of the title.
The game was protected against
copying with codes to be inserted at
predefined times, taken from the
manual, not photocopiable as it was
written in blue with red lines...

An Audio-Drama on music told the
story of the game.

In addition, a leaflet with the technical
information according to the version
purchased was attached.

Technical explanation
Loom was the fourth game to use the
SCUMM game engine written by Brian
Moriarty, with the soundtrack of
Tchaikovsky's music and the graphic
backdrops created by Mark Ferrari.

Developed first on EGA PC it was then
brought to various platforms including
Amiga, Atari-ST, Macintosh.

Loom is a graphic adventure, but
different from all the others: while in
the others you use actions such as
Open, Close, Talk and so on, here you
use musical notes to create magic
called "Textures" with which you can
perform actions such as: Dye, Open,
Fill etc.

The musical arrangement adapts well
to the fantasy atmosphere, with music
that repeats itself at the right times.
This mechanics, which nowadays
seems obvious, is actually quite difficult
to achieve effectively, and the
frustration of not having music
synchronized with the game later led
the programmers of Lucasfilm Games
to develop the iMuse (Interactive Music
Streaming Engine) system.

LOOM
Year: 1990
Editor: Lucasfilm
Developer: Lucasfilm
Genre: Avventura grafica
Platform: Amiga

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 71 of 86

GAME TESTING

As an addition, the sound effects heard
during the various locations accompany
the player without making him forget
where he is at that moment.

The graphics sector developed on EGA
PC cleverly exploits dithering to be able
to simulate on screen a greater number
of colors, so until the VGA version came
out in 256 colors with as much dubbing
on CD, EGA version was maintained in
all the previously mentioned platforms.

The latest versions were released for
FM-Towns and PC-Engine TG16.
To the detriment of what one might
think, Loom was fairly successful at the
time: Brian Moriarty declared that he
was willing to write a trilogy in which
the second chapter should be called
"Forge" and the third "The Fold". Later
he put the idea aside to devote himself
to other projects and there was no one
else who thought or felt like continuing.

Conclusions
Loom is really a particular video game,
not too enigmatic or complex, but that
knows how to dose carefully and entice
the player to discover what they can
offer. Every step taken is seen as a
personal achievement. When it came
out at the time it was innovative and
much appreciated, so much so that it
is still considered a Cult among all nerds...

Curiosity

It is noteworthy that Loom was released
in English, French, Spanish and German.
Over the years several users have tried
their hand at the Italian translation of
the video game.
Simone "SimonPPC" Battaglioni, editor
of this article, made the last release in
a period of time and tried to keep the
author's original work unchanged.

At the time of writing he was working
on the VGA version, but he confided
that he was thinking of putting his hand
back on the previous versions adapted
by him, namely PC EGA, Amiga, Atari
ST and Macintosh.

As a cherry on the cake, among the
various photos included in this review
you can admire Bobbin's mother's grave,
which being a graphic part took a long
time to figure out how to modify it.

However, Simone has also succeeded
in this endeavour thanks to his
collaboration with a foreign user.

Before leaving you, we want to propose
this video of Loom's longplay made by
Simone Battaglioni together with friends
of Retro Edicola Videoludica:
https://www.youtube.com/watch?
v=DmSyp_0ETV0

by Gianluca Girelli and Simone
Battaglioni

» Gameplay 85%
Thanks to the three difficulty
levels it is well balanced and
the puzzles are not so complex
that they can't be overcome.
One of the most beautiful
adventures ever made.

» Longevity 90%
You won't get tired of playing it
to find out if you left something
behind or just for the sake of
listening to the melodies again.

OUR FINAL SCORE

Page 72 of 86 RETROMAGAZINE WORLDENGLISH YEAR 2 ISSUE 5

GAME TESTING

If today the graphic quality of a nextgen
title is measured by the polygonal
complexity and massive presence of
ray tracing, when Commodore Amiga
still dominated the world of video
games, the most demanding players
measured the artistic quality of a game
with the quality of its pixel art.

The Lemmings series really gave its
best since the rodents in question had
been expertly made by DMA Design
software house using just a handful
of tiny pixels! Lemmings was the kind
of puzzle you used to play perhaps
after a furious space battle at Project
X or after an entire grand prix at Geoff
Crammond's polygonal Grand Prix,
wasting your hours in the complicated
and delicious attempt to bring most
cute little beings out to a series of
increasingly complicated and
challenging levels.

As many of you will know, Lemmings
is a series of video games that has
been able to entertain millions of
players even on tablets and
smartphones in recent times, but was
born in the early 1990s on the flagship
of the Commodore house.

The game levels were for the Lemmings
tribe an immense fatality in the sense
that if the player had not given them
the right skills at the right time they
could have stayed there to walk back
and forth infinitely or they would have
died falling en masse from a height
that their slender physique could not

bear. In other words, in Lemming,
squashing was the order of the day!

The game interface consisted of a
multi-directional scrolling time level,
a small map, and a series of icons
indicating the available skills level
variables. The player had to assess
the situation based on the morphology
of the level and the skills available to
complete the mission. Typically the
goal was to get a certain percentage
of Lemmings to the exit portal but this
percentage could be set by
programmers to 100%!

A feat not always easy to complete
since the artificial intelligence of the
cute little beings was limited to making
them constantly walk in a certain
direction reversing it in case of contact
with obstacles that cannot be overcome
with their normal walk.

However, using the skills by clicking
on the right Lemming at the right time
(which is not always easy given their
size) we could make them perform
even rather complex actions such as
building bridges, digging the ground
and rocks, using umbrellas as
parachutes, blocking the advance of
the other tribe members (so that we
can proceed without too many losses)
or even committing suicide!

Yeah, in Lemmings sometimes sacrifice
was also indispensable for the good
of the whole tribe and this is how a
fun puzzle game that in its Holiday
version delighted us with delicious
Christmas scenery (but do not miss
the main chapters) had managed to
gain a special position in the heart of
many players of those years and with
the new mobile vesicles still today!
Oh, no!

by Flavio Soldani

HOLIDAY
LEMMINGS

Years: 1991-1994
Platform: Commodore Amiga
(basically all...)
Genre: puzzle/platform
Reviewed version: Holiday
Lemmings

» Gameplay 90%
Lemmings is pure strategy,
puzzles and brain teasers. If
you let yourself be won over,
you won't give up anytime
soon!

» Longevity 96%
The first and perhaps most
rewarding chapters born on
Amiga are still available today,
ready to be emulated on any
type of platform including 8
and 16 bit consoles. Also
available versions adapted for
mobile platforms.

OUR FINAL SCORE

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 73 of 86

GAME TESTING

Dear Dreamers, who of you experienced
awakening to try and remember in detail
the dreams you just had? Well, I did. And
surely many of you, myself included, then
went to the dream interpretation sites to
get some idea of dreamlike symbols and
general meaning, especially if dreams
were actually real nightmares. One of the
most recurring dreams, which happens
at least once in your life to everyone, is
the one in which you fly over the skies of
our city like a bird. Weird Dreams will allow
us to relive some of these strange dreams
in front of the PC or smartphone screen.
The protagonist in the chess pyjamas of
this game, in fact, will find himself living
in these bizarre products of the mind
because of the sleep induced by an
anaesthesia suffered in the operating room
of a hospital.

It all begins on a rather confusing screen,
where it is also difficult to understand
what needs to be done. Once we understand
the mechanism of play, we will find ourselves
in many other fixed screens with many
new worlds, including a carnival and many
enemies and puzzles to face, such as giant
bees and girls armed with kitchen knives.

The world of dreams is not only singular
but also full of mysteries. And this game
almost represents it perfectly, thanks to
the strange but beautiful settings. Of
course solving puzzles is essential to
moving forward in the game. Gameplay
is a bit slow, and it takes a while to respond
to commands, especially when you have
to turn around to escape from an enemy.
One of the strongest reasons to continue
playing (and to complete it), despite the
inherent difficulty of gameplay, is the
quality of the music theme, different for
each screen. The use of the sound chip is
truly masterful and deserves the publication
of the soundtrack!

The game didn't get much press coverage
when it came out, although in fact, it was
judged by good reviews in specialist
magazines. He probably went a little deaf

because of the concomitant success of
the many smash-hits of the time.

As a result, he quickly disappeared from
the leaderboards and spotlights of the
press and word of mouth. In addition, few
stores had it on shelves or in the shop
window. Weird Dreams was also converted
for 16-bit computers, gaining much more
success thanks to the greater graphics
and sound capabilities of machines such
as Atari ST and Amiga. But in all versions,
in addition to the soundtrack, it is the
puzzles proposed that entice us to load
and proceed through the various game
screens. In the C64 version, I highly
recommend the disk version for convenience
and to avoid continuous loading, as we
will not struggle to lose the five lives
available (hard to win against a giant bee
and a creepy little girl armed with a kitchen
knife).

After the loss of a life you will be able to
see a scene of the situation out of the
dream, that is, the surgeons who are
operating on us. Their eyes do not promise
anything good about the outcome of the
intervention. Are they the authors of all
this estrangement that for us means
wandering in the nightmare of the game?
I do not deny that some people may find
the game a little disturbing given the
overall atmosphere and suggestion, but
it is still worth dusting it down, taking it
for a spin and keeping it in your collection
as a relic. Pay due attention to him, as I
did in this article, because in my opinion
he deserved and deserves something more
in terms of appreciation by the players.

As always, I wish all of you a peaceful
holiday despite these inevitable limitations
to which we have been forced for almost
a year now. Let's console ourselves with
RetroMagazine World and our beloved
retrogames!

by Daniele Brahimi

WEIRD
DREAMS

Year: 1989
Editor: Rainbird
Developer: Rainbird
Genre: Horror
Platform: Commodore 64

» Gameplay 60%
The controls seem a bit slow
and delay the action and our
reaction to hazards.

» Longevity 75%
The soundtrack and puzzles
help extend the life of the
game.

OUR FINAL SCORE

NEW GAME!!!

Page 74 of 86 RETROMAGAZINE WORLDENGLISH YEAR 2 ISSUE 5

GAME PREVIEW

Final Fight is a classic arcade loved
by the video gaming community since
it was released as an arcade in 1989.
It was brought to many platforms
including SNES and also received two
sequels, but perhaps not everyone
knows that it was also converted in
1993 on NES.

In July of that year in fact Capcom
published Mighty Final Fight for the
8-bit Nintendo, a more "carefree"
version of Final Fight with a colorful
super deformed chibi style.
It is a classic porting of the original
arcade and follows the same plot.
Everything takes place in Metro city,
a metropolis invaded by criminality
due to the Mad Gear Gang.

The gang leader fell in love with Jessica,
daughter of Metro City Mayor Haggar.
Mayor Haggar gets a phone call in the
middle of a training session with Cody,
Jessica's boyfriend, and Cody's training
partner, Guy. The villain on the other
side of the line informs Haggar that
Jessica has been kidnapped and will
be forced to marry the Mad Gear Gang
leader. Without a moment to lose,
Haggar, Cody and Guy take action and
prepare to take on the Mad Gear Gang
once and for all to get Jessica home
safely.

As you might expect, Mighty Final
Fight is a side-slip fighting game.
Unlike classic FINAL FIGHT, this version
is "only one player".

The absence of the second player
unfortunately makes the game lose
the title of the biggest 8-bit hitter. But
as in the main title, also in this version
we can select all three major heroes:
Cody, Guy and Haggar. Everyone has
their own unique abilities and a variety
of different moves.
This version for NES also stands out
from the other games in the series by
introducing a level system for character

progression. The player receives
experience points for defeating an
enemy and the amount of experience
you gain depends on the move you
end up with your opponent, the more
complicated moves make, the more
points you earn.

Once you've gained enough experience,
your character will level up and unlock
new fighting techniques. The game is
generous enough to give the player
6 lives per game. There are also bonus
phases during the game where you
can earn extra lives, health boosts,
player specific weapons and even
continuous extras. Even with all these
lives and power-ups, the game is not
a walk in the park.

It has a fair amount of challenges,
enough to keep you busy but not
enough to end up in the same category
of games as Ninja Gaiden. At first it
may seem too difficult, but the excellent
control is easily mastered with practice
and gives you the chance to play the
game to the end, just like I did in the
video below. Overall, the gameplay is
excellent. It's fluid, responsive,
satisfying and, most importantly, very
fun.

The graphics of this game are superb.
A great example of what the NES is
capable of. The animation of the sprite
are some of my favorites ever on the
little Nintendo. I love the way enemies
react to being hit and the way their
faces express shock after being
punched.

The backgrounds are well detailed
and colorful, and I like the Super
Deformed art direction that developers
have decided to adopt for this title.

The only problem is the flickering that
sprites suffer from. The image
processing unit in the NES can only
display eight sprites per scanline at

MIGHTY
FINAL FIGHT

Year: 1983
Editor: Nintendo
Developer: Capcom
Genre: Beat'em up
Platform: Nintendo NES

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 75 of 86

GAME TESTING

a time. Character models often consist
of multiple sprites and when there are
too many sprites on the screen at the
same time, the hardware must prioritize
what needs to be shown.

This translates into the flickering of
sprites which is a feature of so many
fantastic NES games. This often happens
in Mighty Final Fight as well.

It bothered me a little when I first entered
this game, but after playing it for a while
I stopped noticing it and it left me almost
completely in my mind because I was
enjoying the gameplay so much.

Trembling sprites are better than
watching the NES slow down and suffer;
another common event in NES games,
and Mighty Final Fight never slows down!

In conclusion, Mighty Final Fight is a
fantastic fighting game that is unfairly
overlooked and often forgotten. I think
this is due to his late release on NES.
At this point the SNES had already been
released since two years and Final Fight
2 was about to be released on that
system. Today, this late release means
it's rare and expensive by the retro
video game collecting scene.

Fortunately the Famicom version is
much cheaper and contains no major
changes other than language in the cut
scenes.

I recommend following that direction
if you want to play this game with an

original cartridge. Overall, I find hard
to think of anything negative about
Mighty Final Fight.

It's a little short and doesn't have a
cooperative mode for two players, but
it's still a very fun and stimulating single-
player experience. Some bosses are
repeated and the sprites flash a lot, but
the gameplay, control, soundtrack and
art are so good that you forget about
these flaws.

I highly recommend this game to both
occasional NES fans and avid collectors,
and there are ways you can play this
game without spending your money on
an expensive copy of the NES cartridge.
Test it on an emulator or on Switch via
virtual shop.

There are plenty of options to get out
and bring peace back to Metro City.

by Carlo N. Del Mar Pirazzini

» Gameplay 90%
Exceptional gameplay with an
innovative character
advancement system for this
type of games. Too bad about
the lack of the second player
option.

» Longevity 75%
Fun, well developed and with a
good level of difficulty
throughout the game. It is not
very long.

OUR FINAL SCORE

Page 76 of 86 RETROMAGAZINE WORLDENGLISH YEAR 2 ISSUE 5

GAME TESTING

In Mario's world, everything is fantasy;
nothing can be considered real, nothing
makes sense.
But what happens when the characters
from Mario's world are put in the
driving seat?

Mario Kart 64 is an exceptional sequel
to Super Mario Kart (SNES).

The original Super Mario Kart contained
four game modes: Mario GP, Versus
Mode, Battle Mode and Time Trial -
available for 1-2 players only.

On N64 Mario Kart takes a big leap
forward in its gameplay. Now, 1 to 4
players can challenge each other on
all the sparkling new slopes. 16 Grand
Prix slopes divided into four cups:
Mushroom Cup, Flower Cup, Star Cup
and Special Cup.

As in the first beautiful game for the
Super Nintendo (still an absolute
masterpiece of gameplay after almost
30 years) players will be able to
challenge themselves in 50cc, 100cc
mode and in the furious and very fast
150cc category. The difficulty is
obviously based on these speed
classes, the lower it is and the simpler
it is and, of course, the higher it is,
the more complicated the challenge
will be.

Obviously there are no shortages of
game opponents, 8 characters all with
their own personal characteristics
(from light and fast but fragile Toad
to Bowser, heavy and destructive),
there is no shortage of power ups and
weapons to launch to make way.

In 2-player GP mode, they can join
forces or compete against six other
drivers. Versus mode, on the other
hand, brutally presents the challenge
between 2-4 players on the slopes of
the game. No cups or prizes. Simple

brutality between rivals.
They are present as we said 8 playable
characters: Mario, Luigi, Princess
Peach, Toad, Wario, Yoshi, Donkey
Kong and Bowser. Classified as light,
medium and maximum weights.

Therefore each weight class (as we
said a few lines above) has a strength
and a weakness and we will be forced
to choose with a little practice the
most suitable character for us.

I prefer Toad and Yoshi, for example,
but the former suffers for the tonnage
and the second for the handling.

There are the classic weapons of the
first Mario Kart such as banana peel,
green shell and red shell, the time
ghost that allows us to disappear
momentarily and the star.

Add to those the multiple bananas
and the set of shells, that can be
collected around and which allow us
to have more bullets than normal.

There is also the fake power up block
which, if used correctly, can become
devastating and very annoying.

The real value of the game, however,
is in the Battle mode, available for 2-
4 players at the same time, which

MARIO KART 64
Year: 1996
Editor: Nintendo
Developer: Nintendo
Genre: Driving
Platform: Nintendo 64

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 77 of 86

GAME TESTING

allows you to play a game in four different
arenas.

In this mode each player receives three
balloons. The aim is to avoid getting
these balloons destroyed by the opponent
by trying to blow them up to him.

This mode is perhaps the most fun and
destructive part of the game. Capable
of keeping us glued to the screen and
breaking down loves or friendships
given the high challenge rate.

The generational leap between the
Super Nintendo and the Nintendo 64
is clearly visible in graphics and its
development. A very detailed 3D
environment where sprites take on more
“courage” in movements, the tracks
become more colourful and detailed
and there are numerous graphic effects.

A beautiful and colourful 3D fantasy
world in pure NINTENDO style. It certainly
doesn't take full advantage of the
machine's hardware like other games
(Mario 64 or Zelda), but it's a great look
and spins beautifully.

The soundtrack and sound effects are
also customised. Each character makes
different sounds or screams.

Game controls are perfectly balanced
and never frustrating. Accelerate with
"A” and brake with “B”. The “Z” key
selects the object and shoots it, the
back keys “L” and “R” blow up the
character.

Pad "C" changes the displays, the analog
lever is used for driving. Convenient
and affordable predefined controls, but
you can always customize them.
In conclusion, Mario Kart 64 is ideal for
playing against your friends.

It is the type of game
to insert during the
Christmas period
when (Covid's
restrictions allowing)
relatives at home get
bored.

We turn on the
Nintendo 64 and take
on an unprecedented
4-man challenge.

A compelling
gameplay and perfect
nintendo style

gameplay structure make multiplayer
gameplay the most beautiful part of the
game.

You're probably wondering why I didn't
write a few lines or a review for the first
Super Mario Kart.

Because I consider this version to be
the turning point of the series.
The evolution that has allowed brands
to continue in their future incarnations.

A diamond thanks to the multiplayer
version.

Mario Kart 64 is a well done, fun, noisy
and almost perfect game. Even after all
these years.

by Carlo N. Del Mar Pirazzini

» Gameplay 95%
Numerous game modes in both
single and multi player,
difficulty system calibrated
through go kart classes,
perfect controls.

» Longevity 95%
How can you rate a game that
has made on-screen
multiplayer its strong point. Up
to four players in GP mode is
fun, in VS mode is violent and
rough, but it is with the Battle
mde that becomes legendary!
Immortal!

OUR FINAL SCORE

NEW GAME!!!

Page 78 of 86 RETROMAGAZINE WORLDENGLISH YEAR 2 ISSUE 5

GAME TESTING

Wiz Quest for the Magic Lantern is a
new 2D side-scrolling action platform
game for Commodore Amiga. In Wiz,
take control of the last old wizard and
you need to find the Magic Lantern
before it's too late. You are not unarmed
in your research as you have your
magic book and potions at your
disposal.
You will need every trick to complete
this search as the world ahead of you
is dangerous.
A classic start to a new game.

Good old-fashioned action platform
When we think about 2D action platform
games, we probably think about Mario
and company. I do, too.
The Nintendo franchise is synonymous
with the genre and for many good
reasons. What should make this new
Friend game different from the classics?
Wiz Quest for the Magic Lantern has
that extra touch of charm that most
2D games lack.

For example, the set of motion
animations of our protagonist, for
example we take the animation on
foot, with extra frames for nose and
hat. Both move at every step bringing
some realism to the game, but not
only is the entire set of animations
really well cared for.

The devil is in detail as an old proverb
says. Fortunately, Wiz Quest for the
Magic Lantern pays attention to them.
The developers have developed the
game in two ways. The classic version
in physical version that features manual,
box and discs (and several extras,
ndr) and the digital download version
for anyone who is not lucky enough
to own a Friend 1200 or 4000 in
physical form.

Apart from specifications and features,
what we have is a good solid platform.
The short development time and the
fact that this is the first (of many) new

games for Mutation Friend means
there is not much to push on what the
hardware is capable of. Wiz is not a
fast and contracting game in any way.
There is no timer, so you can spend
your time passing through the levels.
And it is a game that does not allow
mistakes, it is really an “old school"
product.
Only doubt. And if it wasn't for the

beautiful AGA graphics, I'm sure the
game would easily run on a 68000
Amiga. This does not mean that Wiz
is a bad game, as it is not, but perhaps
by optimizing the code better you
could have enjoyed even with less
performing processors than 68020
or higher. It's a cute, cute and unusual
platform with smooth scrolling and it
deserves to be in any collection of
Amiga owners.
As I said, the levels are not very many,
but they are all quite difficult to
complete without the necessary
attention. This will give you several
hours of play.

The verdict can only be positive. It's
only $9.99!
You can order it here:
http://softwareamusements.com/
MutationSoftware/index.html
by Carlo N. Del Mar Pirazzini

WIZ QUEST FOR THE
MAGIC LANTERN

Year: 2020
Developer: Mutation Software
Genre: Platform
Platform: Amiga (AGA)

» Gameplay 75%
The protagonist may be tender
and delicate, the monsters are
cute... but the game is quite
difficult and requires practice
(it is really pixel perfect). Well
developed control system and
physics of jumps.

» Longevity 80%
A nice full 8! The level of
challenge is high and will make
you spend several hours in
front of the screen.

OUR FINAL SCORE

NEW GAME!!! NEW GAME!!!

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 79 of 86

GAME TESTING

A perfect arcade game. This is Zeta
Wing.

A technically perfect vertical shooter,
fluid, with tons of parallax, no
slowdowns and a compelling game play.

A product developed with a lot of love
towards the commodore scene and
for the love of its players.
The plot is simple. Clean the planet
with our spaceship through 7 levels

with the possibility of improving our
weapon system by advancing through
the levels.

The advancement takes place with 10
enhancements of our defense system
and, joy and triumph, even if you die
you do not lose everything as in many

shoot em ups, but you go back just
by an enhancement. That's because
the game is well balanced, but it's
bloody hectic and full of challenges.

To all this let's add an atmospheric
music for this genre, three levels of
difficulty and saving the score on the
disc.

A game worthy of the best shoot em
ups on the Commodore machine, but
also worthy of the beautiful arcade
games of the same kind.

Beautiful and also inexpensive. Only
$3.99 through the author's website.

Don't miss it.

2020 is a troubled year for the world,
but on the Commodore 64 side it has
seen a scene rich and full of small
jewels.

Beautiful!

by Carlo N. Del Mar Pirazzini

ZETA WING
Year: 2020
Editor: Protovision
Developer: Sarah Jane Ivory
Genre: Shoot'em up
Platform: Commodore 64

» Gameplay 90%
A perfect arcade game!
Balanced, playable, fluid.

» Longevity 90%
It will keep you busy for quite
some time and the difficulty
level is well balanced.

OUR FINAL SCORE

NEW GAME!!!

Page 80 of 86 RETROMAGAZINE WORLDENGLISH YEAR 2 ISSUE 5

GAME TESTING

In 1996, with the overbearing entry
of the "polygon” into the world of
video games, all the developers of the
time set out to produce anything using
three-dimensional graphics engines
for all the machines in the market.

A difficult and not always successful
undertaking. The generational leap
had not yet been fully somatized by
programmers and, very often, the
results were “strange” and
disappointing.

The Nintendo 64 also saw the change
of the company's main saga land in a
new three-dimensional guise, but
thanks to Shigeru Miyamoto's
capabilities and ideas, this jump from
2d to 3d was very successful.

And so came a new chapter of Mario
also on Nintendo 64 and revolutionized
the world of platforms, influencing it
for future generations.

Nintendo hit the spot once again,
creating a perfect balance between
control system, graphics, gameplay
and a sense of exploration that had
not yet been seen before. This made
Super Mario 64 an authentic universally
recognized masterpiece.

When I was young, holding the
"TRICORN” pad and taking control of
the plumber with moustache I could
sense the feeling of this new adventure
of Mario, opening who knows what
doors, into the future of video games.
And it really was.
With 35 years since the birth of the
Italian-American plumber saga,
Nintendo has decided to make three
titles for Switch: among them of course
there is Super Mario 64.

But since in this issue Nith talked
about the original console (in the
Hardware section: Nith), I will talk
about this version. Super Mario 64 is
a pleasure today, the search for 120
stars can still become an obsession,
in fact if it were up to me I would have
added even more.

In the modern eyes of the classic video
player, the camera that follows you
may be cumbersome (in reality I found
it a bit annoying already in 96: Nith)
and the graphics a little "retro”, but
nevertheless from the technical point
of view, SM64 still defends itself quite
well and makes proper use of the
hardware of the Nintendo 64.

The control system is perfect. Mario
replies to commands like a charm and
we are really free to do what we want.
This has also changed the approach
to the saga in the next chapters such
as Sunshine for GameCube and the
beautiful Galaxies for Wii.

SUPER
MARIO 64

Year: 1996
Editor: Nintendo
Genre: Plaform
Platform: Nintendo 64

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 81 of 86

GAME TESTING

For anyone who wants to dive into one
of the most important and fun video
games of all time I strongly recommend
recovering it.

You can try it on N64 with the original
physical version or in a Rom version for
Everdrive. Or maybe on an emulator or
even in the beautiful collection on Switch!

Try it! There are many beautiful games,
but there are few titles capable of
creating a new path for the future. Super
Mario 64 created the way for the future.
A masterpiece by Miyamoto that was
the springboard for the last cartridge
console in history.

Before I leave, I'll explain my vows. If

there was a global, I'd give 95% off
because it's the whole thing. The votes
I have expressed are a “desire”, that
today I would like much more. I would
like more stars, more levels, more Mario...

by Hakim Rezki

» Gameplay 90%
A small miracle of a game, with
an incredible control system.
Still a pleasure to play today.

» Longevity 85%
120 Stars is a lot. But I wanted
more.

OUR FINAL SCORE

Page 82 of 86 RETROMAGAZINE WORLDENGLISH YEAR 2 ISSUE 5

GAME TESTING

In the world of video games, the history
and setting of Final Fantasy VII have
been elevated to the realm of myth.

First published in 1997 for Sony
PlayStation, it ushered in a new era
of Japanese role-playing games and,
in the meantime, its story where the
hero Cloud Strife and a disorderly
gang of idealists and minions fight
the captivating and evil Sephiroth for
the sake of the planet, has become
bigger than life for many players.

Cloud, Sephiroth, the floating city of
Midgar: these are significant in the
world of games that go far beyond
the game from which they come and
exist with power outside their context.

Final Fantasy VII was the absolute
killer application for the Sony machine
and perhaps the most dazzling visual
experience for that console and
consoles of that period.

High-quality movies blended
seamlessly with game graphics and
animations to create the surprisingly
realistic world of the game.

But what struck the most about the
game was the plot that helped to

weave this aesthetic game.

The moving plot of Final Fantasy VII
is influenced by some of the greatest
films and science fiction literature,
including Frank Herbert's Dune, Mary
Shelley's Frankenstein, and even
Godzilla.

Just this year, on the wave of countless
similar operations, the Remake for
the next generation consoles came
out. A remake made graphically and
beautifully, which changes very little
the game mechanics and the trend of
the plot.
But let's focus on this primordial 1997
version.

As with previous and beautiful episodes
featured on Nintendo consoles, this
episode was presented to the general
public who were learning to appreciate
video games. A much wider audience
than the previous 90s Wars console,
which featured neophytes literally
electrocuted by the well-structured
gaming system and the perfect
narrative.

Glued to the screen for hours, excited
by the stories. Think I've even seen
kids cry as the story unfolds.

But after all these years, what can we
say about this version? Is it still good?

It resents age aesthetically, but when
you reopen the box and turn on the
first Playstation again the magic will
be there with you again.
Bard's word.

by Roberto “Il Bardo” Del Mar Pirazzini

FINAL
FANTASY VII

Year: 1997
Editor: Sony
Developer: Square Soft
Genre: JRPG
Platform: Playstation 1/PC

» Gameplay 90%
Intuitive and enjoyable control
system. The perfect narration
will keep you glued to the
screen.

» Longevity 95%
Three cd roms of puzzles,
fights, and stories. Do you need
more?

OUR FINAL SCORE

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 83 of 86

GAME TESTING

Last year, I gladly played Sydney Hunter
and the Curse of the Mayan for Switch
and loved it, so imagine my surprise when
I found out that its predecessor is actually
available as a Super Nintendo game!
Once I got my hands on it, I was immediately
brought back to the mid-1990s, when
SNES games dominated the wars console.
Wonderful '90s!

Let's start with packaging. The box is
beautiful, complete with fantastic covers
by Joe Simko (Joe Simko is an illustrator
from New York City who contributed to
the collectible cards of Topps Garbage
Pail Kids and Wacky Packages, Nth) and
is actually better than the boxes of the
"old-fashioned" game because it is made
from a durable material rather than a
fragile cardboard. Inside, the game
cartridge is in a transparent plastic holder
which, once again, is probably better than
the classic SNES game packaging. Last
but not least, the manual that contains
valuable information and, of course, a
page to write down your passwords. It
really is an extraordinarily well made
package.

So, what about the real game? Sydney
Hunter is a geologist on a mission to
explore Mount Fate. Soon he is trapped
in the mountain and the goal is to guide
him towards freedom. You do this by
running, jumping and climbing through
12 complicated labyrinthine levels while
you launch your boomerang to the terrible
creatures that reside in caves.
Many rooms are surrounded by darkness,
but fortunately Sydney has a flashlight
that he can hold and illuminates the room.
However, he can't run with the flashlight,
so you're forced to memorize where the
enemies and dangers are. The resulting
formula is quite challenging and tests your
ability to progress slowly through the rooms.

One thing this game does exceptionally

well is to offer scenery that rewards
exploration as there are many treasures
hidden everywhere. You will need to explore
to progress as most steps include blocks
that do not open unless you place certain
objects on their pedestals. Sometimes,
removing objects gradually raises lava,
so you'll need to quickly return the object
to its pedestal, otherwise Sydney might
just be the next sacrifice for the island's
deities.

On a graphic level, Sydney's animations
are very beautiful. Watching him swing on
the ropes and run and jump around is a
pleasure. However, the environments never
really change, so get used to seeing many
contours of blue rock, red lava and green
vines. On the bright side, the music is well
made and provides some tribal songs
mixed with old-school synthesizers as you
explore.

In a particular period like this, Sydney is
a great game to relax and get lost in the
caves. You can find it on the site https://
collectorvision.com/ along with other
interesting titles for many systems (Amiga,
Intellivision, Coleco, Snes...) at the cost
of 40 dollars in full version or 25 dollars
loose.

It deserves.

Oh, I forgot. Sydney Hunter's saga is
featured on several gaming platforms: you
can also find it for Sega Master System,
Coleco Vision, Intellivision and Nes. They
are all very fun games that duly exploit
the potentials of the machines on which
they run. Bard's word!

by Roberto “il Bardo” Del Mar Pirazzini

SYDNEY HUNTER AND
THE CAVERNS OF

DEATH

Year: 2020
Editor: CollectorVision
Developer: CollectorVision
Genre: Puzzle/Platform
Platform: Super Nintendo

» Gameplay 80%
First-rate packaging, perfect
for retro game collectors.
Challenging but simple
gameplay. Good music and nice
animations.

» Longevity 65%
Fairly short without much
replay value. Environments
unchanged throughout the
adventure.

OUR FINAL SCORE

NEW GAME!!!

Page 84 of 86 RETROMAGAZINE WORLDENGLISH YEAR 2 ISSUE 5

GAME TESTING

“All the stars are coming out tonight
They're lighting up the sky tonight…”
Take That - Rules the World.

The stars are on our Sega Megadrive
and they are in excellent game.

One of the latest platforms produced
before the console was dismantled.

The protagonist Ristar has the arduous
task of saving the Valdi galaxy from
the plans of the evil alien Greedy. He
is certainly not the strongest hero or
the most technological, but he is the
most heroic! Our hero has no super
rotations or super jumps but a pair of
extendable arms with which he can
grab objects, cling to stairs, climb the
most unthinkable places and, of course,
beat enemies.

The game presents itself as the classic
two-dimensional scrolling platform,
similar to Super Mario or Sonic (in
this case because of the same
development team, the Sonic Team,
ed.).

Ristar's extendable arms are used as
the main means of attacking enemies;
extending arms, grabbing the enemy
and pushing toward them in a
"headshot " movement to defeat him.
The same movement also allows you
to open treasure chests containing
various objects or to hit different parts
of the environment, such as falling
trees. Furthermore his elastic arms
can also be used for grasping and/or
throwing objects.
In addition to attacking, Ristar's arms
are also used as a method of projecting
it across levels. Many pole-like
structures are present to swing Ristar
from side to side, through empty

spaces, or to climb up or down vertically
from platforms.

Ristar is also able to cling to enemies
and objects in the air and swing on
them. The "Star Handles" are placed
in the levels, where the player must
grab Ristar and use momentum to
swing it in a 360 degree circle.

Letting go throws him in a certain
direction, depending on the time of
release. If you gain enough momentum,
the sparks appear behind Ristar and
he makes a move called "Meteor
Strike", which makes him invincible
and able to defeat any enemy by
touching him.

When enough momentum is lost,
usually a few seconds, the flight ceases
and he falls to the ground returning
to his normal state, although this can
be extended by bouncing against walls
and ceilings during the flight.

Each level ends with a special "Star
handle", which is used to start Ristar
until the end of the level. Bonus points
are awarded based on Ristar's altitude
when you fly off the screen, similar to

RISTAR
Year: 1995
Editor: Sega
Developer: Sega
Genre: Platform
Platform: Sega Megadrive

RETROMAGAZINE WORLD-ENGLISH YEAR 2 - ISSUE 5 Page 85 of 86

GAME TESTING

how levels end in Super Mario Bros.

The game gone almost unnoticed, at a
particular time of the generational
change between consoles.

The development team has created a
truly excellent product from a graphic
point of view. Colourful and superbly
animated, this game is a real eye joy.

Less excellent is the sound compartment,
but still enjoyable.

Innovative in game play but perhaps
less intuitive than Sonic. Cumbersome
in maneuvering the character
movements.
There are six planets to clean up, in
each of them there are two levels, with
a miniboss in the first and a real one in

the second. Once the planets are
completed, we cab go to the final clash
with the wicked Greedy.
It is not an impossible undertaking and
therefore the final longevity is average.

Final tip, somehow retrieve this niche
product and play it.
You will spend a few hours relaxing ...
among the stars!

by Carlo N. Del Mar Pirazzini

» Gameplay 80%
It's a Sonic Team product, so
it's well developed in all
respects, but it's not as
intuitive as the Sonic series. It
takes a bit of practice to better
manage the character's
abilities.

» Longevity 80%
Six worlds to explore and a
longevity typical of this genre
of games.

OUR FINAL SCORE

RetroMagazine World as an aperiodic
magazine entirely ad-free is a non-profit
project and falls off any commercial circuit.
All the published material is produced by
the respective authors and published thanks
to their authorization.

RetroMagazine World is licensed under
the terms of: Attribution-
NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0) https://
creativecommons.org/licenses/by-nc-sa/
4.0/

This is a human-readable summary of
(and not a substitute for) the license. You
are free to:

Share — copy and redistribute the
material in any medium or format

Adapt — remix, transform, and build
upon the material

The licensor cannot revoke these
freedoms as long as you follow the
license terms. Under the following terms:

Attribution — You must give appropriate
credit, provide a link to the license, and
indicate if changes were made. You may
do so in any reasonable manner, but not
in any way that suggests the licensor
endorses you or your use.

NonCommercial — You may not use the
material for commercial purposes.

ShareAlike — If you remix, transform, or
build upon the material, you must
distribute your contributions under the
same license as the original.

No additional restrictions — You may not
apply legal terms or technological
measures that legally restrict others from
doing anything the license permits.

Disclaimer
No, I don't want to talk to you about COVID numbers, to which we are all sadly
accustomed; in the last issue of the year, in the last article on the last page,
I would like to share with you some numbers and facts that have defined this
and the first 4 years of RetroMagazine World.

This year approaching its conclusion (in the moment I was writing the article),
apart from all the difficulties that have characterized it, has seen our magazine
transform itself deeply: RetroMagazine has changed its name, becoming
RetroMagazine World.
This change was necessary because we wanted to open ourselves up to the
world by publishing the English version as well.
Maintaining two publications in two different languages, takes time and
considerable effort by the entire editorial staff, for this reason you may have
noticed a slight thinning of the releases... But don't worry, we're always alive
and kicking. Today more than ever, in spite of the COVID!

Those who follow our Facebook page will undoubtedly noticed the change of
pace we made this year: every week we publish dozens of posts, curiosities
and previews of new games under development. Kudos for this decisive change
goes to Nithaiah who is tirelessly striving to find information to share with all of you.

Well, for those of you who hadn't noticed, we also opened a Twitter channel.
If you're more comfortable on that social media site, follow us there too.

But didn't you want to give us a few numbers? Sure! Here they come!
In these 4 years we have published 27 Italian issues in Italian and 5 English
ones (including this one). More than 480 articles have been published on
these pages, including 190 game reviews and more than 100 articles dedicated
to coding. 16 There were the RetroMath columns and 24 interviews. We also
hit more than 15 programming languages and more than 70 different computer
models.
Obviously these statistics are not an end in themselves, but they allowed us
to discover we have given little visibility to Atari machines and especially to
Atari ST. It was certainly not our intention to snub this computer; unfortunately
nobody in the editorial staff is a true expert and we have never received
external contributions. We therefore publish an appeal:
Are you an expert on Atari 8-bit and Atari ST and would you like to collaborate
with us? Contact us, the editorial offices are open!

Well, the cover of this Christmas issue is special and is a clear tribute to a
famous Italian magazine. Let's see who guesses both the magazine and the
issue that inspired our graphic artist Flavio Soldani.

Before leaving I want to wish you, on behalf of the entire editorial staff of
RetroMagazine World, Happy Holidays with the hope, in 2021, to see the
COVID emergency end soon because we want to return in person to our retro events!

Francesco Fiorentini

Here are the numbers!

RetroMagazine World-English
Year 2 - Issue 5 - JANUARY 2021

Chief Editor
Francesco Fiorentini

Managing Editor
David La Monaca
Editing Manager

Marco Pistorio
Web Manager

Giorgio Balestrieri

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

	BIBLIOGRAPHY
	How to use the examples

