
RETROMAGAZINE YEAR 2 - ISSUE 13 PAGE 21

Official web site: www.RetroMagazine.net Facebook page: RetroMagazine

 PLAYER 2

Vectrex-style packaging
The perfect 80's style package contains all sorts of
treats for the perfect retrogamer and collector: an
instruction booklet in 5 languages, game stickers, a
nice poster and even the coloured transparent overlay
to put on the screen of your beloved console. All
quality stuff that will make you think you’ve just
bought your favorite game in a little computer store of
the Eighties.

Lots of games for 2 challengers
With 10 "classic" titles ready to play there is really no
risk of getting bored. The selections menu is
comfortable and fast. The cartridge content also
features many extras, 4 hidden games, a bonus
application, 4 screensavers, several easter eggs to be
discovered and even a hardware test.

 GAME RATING

 PLAYABILITY

90%
The overall playability of the many games is Player 2’s
main point of strength. Being able to play two-player
games in itself increases the fun and for each title the
winning technique has been taken care of down to the
last detail. A playful experience with a lot of
atmosphere which reveals itself to be "magical" in a
sense, a bit like the console the cartridge runs on.

 LONGEVITY

95%
The high number of games packed throughout the
cartridge ROM space gives Player 2 a special place in
the software library of any Vectrex user. Beating your
opponent is not enough. You also must try to do it
with the highest score. As if to say: a challenge within
the challenge, that will keep you glued to the screen!

It was about a year and a half ago when Robin
Jubber told me for the first time about his project
to start programming some small games in 6809
assembly for the Vectrex, which incidentally is
without a doubt the most "enigmatic" console in
the history of video games, mainly for its
particular design and charm that, even today,
manage to attract many fans of retrogaming. At
the time, I must confess, I thought that his plan
was a bit crazy or at least definitely out of the
ordinary. However Robin is an Englishman so
that’s nothing to be surprised about! Moreover,
the virtue of eccentricity and lucid madness is
undoubtedly one of the hallmarks of
programmers, especially the creative ones who
devote themselves to the design and the creation
of video games. So, after all, there is nothing
new under the sun in the world of hard-coding,
the solemn and deserving practice (now virtually
dying out) in which it is customary to squeeze a
system to the last cycle. Robin is in fact a
professional programmer of video games in his
normal life, while during his free time he does
something else: err... well, not exactly, because
when he's not at work, where he usually remains
buried under a ton of C/C++ code or basically
merged with the Unity development platform,
well, Robin... writes more code and games for his
beloved 8/16 bit computers, such as the BBC
Micro, the Acorn Archimedes and now the
Vectrex! And even if I don't know him very well,
just after his first e-mail messages I realised that
he belongs to the Sacred Round Table of the
Knights Programmers In Shining Armour who,
when confronted with new obstacles and
impossible challenges, throw themselves
forward recklessly, ignoring all common sense
rules. And I was not wrong. About six months
after his first message that started with "Hey,
you know I'm taking a look at 6809 assembly and
how to write a game for Vectrex", he actually
announced me that he was about to finish a new
game for the Vectrex. As a matter of fact, there
were 9 different games in his first work and he
had even managed to store them all in one single
cartridge!

You can read about his adventures discovering
this mysterious console in this same issue of RM
(see his own article titled "Never buy a Vectrex!"),
while I'll talk here about his "multi-game" called
Player 2, released last October by Jubbernaut,
the software house that Robin himself set up to
distribute the products of his labors in an
efficient and old-fashioned way, with packaging,
instruction booklet and accessories included. In
fact, if you ask him, he will tell you that the most
complicated part of the game production was
putting together the packaging and the shipping
or finding the cartridge plastics and the coloured
transparent overlays to be glued to the screen,
certainly not the coding sessions! And he started
essentially from scratch with 6809 assembly and
the console OS! What did I tell you? Basically a
fool!  But the passion for programming and
game design, combined with a nostalgic desire
to write code and publish artfully packaged
games, this made "the miracle" come true. Robin
really did manage to produce a video game that
is extraordinary for the Vectrex and certainly
unique.

So let's start from the name of the game, which
obviously was not selected by chance. The
cartridge contains, as mentioned, as many as 10
complete games, all inspired by the
console/arcade classics of the early 80s. The titles
included in Player 2 must be played strictly by 2
players, as in an endless challenge for the
(unfortunately) rare owners of two gamepads.
The list is very rich: ranging from Pong/Tennis to
Tron, from a clone of Asteroids (Rotatazor) to
one of Pit Stop (Racers). There are also
battleships between the stars (Space War) or
classic shooting games (SpiderFish, Balloons and
Artillery). The more extensive game called
Incoming is a real novelty and ends with a bang
the list of available games. In this game two
players are called to collaborate with each other,
going through a puzzle adventure of 100 screens
and 7 different levels full of pitfalls and dangers,
doors and traps, aliens ready to attack, magnets,
switches, fans and many other obstacles. Our
goal is to lead a critical energy cell to the end of
the maze of rooms and locations. Incoming is the
only game that can be played by a single player
as a time trial version is included. Until now, few
Vectrex titles allowed 2 players to compete on
the screen at the same time. With the
appearance of Player 2 this gap has definitely
been filled. Some games are reasonably easy to
play, others are pretty difficult and others frankly
impossible. At least for me and my daughter,
during my first days of attempts. But the fun is
guaranteed: in its apparent simplicity, the
console hardware is properly exploited by
Robin's code, who used, as he discovered them
while proceeding, advanced techniques to
overcome many graphic limitations, slow
computing power, small space available on the
cartridge and even absurd bugs of the basic
operating system.

For more information and to purchase the game
please refer to: http://www.jubbernaut.com

by David La Monaca (Cercamon)

Player 2
 Jubbernaut – Year of release: 2018 – System: Vectrex

RETROMAGAZINE YEAR 2 - ISSUE 13 PAGE 22

Official web site: www.RetroMagazine.net Facebook page: RetroMagazine

Don’t ever buy a Vectrex!
by Robin Jubber (layout and adapting by David La Monaca/Cercamon)

Don’t buy a Vectrex! Sure, without one your

console collection is just a bunch of plastic

landfill, and yes, it’s the greatest console of

all time; but still. Don’t ever buy a Vectrex! I

bought one and now I have three. This vital

information has been withheld from the

girlfriend, and because her knowledge

about retrocomputing is basically null, she

may never find out, god willing. I also

ended up with a stack of expensive

homebrew, a ton of wonky peripherals and

I recently wrote a game – well, 14 games –

for the machine and now my house is full of

packaging, soldering irons and plastic carts.

I’ve become a home based manufacturing

company – I should have bought a Neo Geo

like a sane person.

If you’re unfamiliar with the Vectrex, don’t

feel bad. Certainly it means you’re not a

proper console collector, know nothing

about retro gaming and shouldn’t be

reading this magazine but on the other

hand, your bank balance probably isn’t a

giant smoking hole in the ground. The

Vectrex is a rare and unusual beast. It’s the

only non-portable with an integrated

screen. It’s the only console that uses

vectors instead of pixels. It’s one of a few

select consoles where a second controller is

almost as expensive as the console itself

(that’s why I bought the third machine,

honey). It has colour graphics, but only in

the weirdest possible sense. It was the first

console with a 3D headset. Every one

comes with slightly wonky graphics, but in

a manner unique to that machine. It makes

a weird buzzing noise even with the volume

at zero. Opening it up for repairs can

literally kill you. It has a carrying handle of

sorts, presumably so you could take it very,

very carefully to your friend’s house but the

carrying handle is incomplete and sort of

sloped, so dropping it is a strong and

expensive possibility. It was only in

production for about a year and a half. It

has around 800 bytes of ram. It is, without

doubt, the greatest console of all time.

The first thing you’ll notice is the screen.

Essentially an old black and white CRT on

its side, the vector display is like nothing

else out there. The simple line-based

graphics pop out from the screen in a way

that cannot be replicated by an emulator.

Your 8 gig graphics card cannot make

graphics like this. Older readers may have

played the original vector Star Wars in the

arcades – this is essentially the same

technology, squeezed into something that

sits on your desk. Because the graphics are

so unusual, and don’t use pixels at all, my

second mistake was to try writing a little

code. Perhaps I could get a simple triangle

up on screen. That could be fun. Then I’d

get back to writing proper games on

machines with millions of kilobytes of ram

instead of not quite 1. A little searching on

the internet turned up a few snippets of

information, such as Christopher Tumber’s

1998 text file that helps with some aspects

of the machine and 6809 assembler. You’ll

also need as09, for turning code into binary,

and ParaJVE, a not entirely accurate or

finished Vectrex emulator. It’s also possible

to write your code to eeprom and test it

that way, but you’ll die of old age before

you get Hello World world up and running.

There is also, incredibly, a full development

environment created by a lovely chap called

Malban, but I didn’t want to bother with

that – this was just meant to be a quick

experiment after all. But we’ve already

established I may be an idiot.

The 6809 that sits at the heart of the

machine is a wonderful cpu. It really only

turns up in embedded systems, the

Vectrex, the Dragon 32 and the TRS-80.

And that’s a shame. The architecture is big

endian, which means a lot of 16-bit maths is

easier for humans to understand. Little

endian, which turns up in rival 8-bit cpus, is

more convenient for simple logic units to

handle a byte at a time, which keeps

manufacturing costs down, but doesn’t

make for such readable or intuitive code.

For a supposedly 8-bit cpu, the 6809 is also

very 16-bit capable. It has two 8-bit

registers that combine to create a 16-bit

word, along with a host of other 16-bit

registers and instructions. Most of the code

you write will be 8-bit, the usual business of

comparing small values and looping over

small data structures – but when you need

to write some fixed point maths, the 6809

really comes into its own. For my first

experiment, a simple Pong clone, this

wasn’t all that important. By the third

game, a simple Spacewar clone, it had

become vital to making smooth movement.

Essentially you don’t want to be restricted

to integer mathematics – you can then only

move discrete numbers of units per frame –

and as the Vectrex only understands 256

units vertically and horizontally, that would

mean your minimum movement rate would

cross the screen in just a few seconds. So

you use 16-bit values, and treat the first

byte as the actual coordinate, and the

second byte as the fractional part. Very

easy with a 6809.

The problem with writing a simple Pong

clone is that I still had about 25K of rom

space free. Obviously I could have just

released the binary file and got on with the

day job, but by now I was hooked on

understanding what the Vectrex could do

and learning a new language. Plus Joanna,

my baby daughter, had just turned up out

of nowhere so I was essentially on self-

imposed paternity leave. So I wrote another

game. And another. Then I shuffled

memory around a bit, noticed some

routines were being used all over the place

and found some more spare rom space. So I

wrote another game. At this point the

original 32K rom, which is all the Vectrex

can address, was getting close to the limit,

so my four or five simple games would end

up on the internet and I could move on,

having scratched a programming itch. I’d

also mentioned my Vectrex adventures to

some other ancient programmers who’ve

been making games since the dark ages

and they were very jealous. No compile

times. No producer leaning over my

shoulder. No gently explaining to simple

minded artists why their artwork is all

broken and useless. Just raw assembler,

Figure 1 – The Vectrex in action!

RETROMAGAZINE YEAR 2 - ISSUE 13 PAGE 23

Official web site: www.RetroMagazine.net Facebook page: RetroMagazine

written directly to the metal – proper game

coding like we used to do when men still

lived in caves.

At this point things took a turn for the

worse. I discovered that some clever coder

had figured out how to do bank switching

on the Vectrex. You could have 64K of code

and data, provided you were very careful

about how it was initially laid out. If the first

chunk of instructions are the same for both

banks, you could send a signal to a magical

place in the Vectrex hardware, and switch

to bank 2. Or back again. Using the same

technique, you could also write to a 32

character eprom, in effect giving the

Vectrex save and load capabilities. Well,

obviously I had to have some of that.

Another 32K to play with? This could

become a compendium of two player

games. Two player games have a couple of

distinct advantages to the lazy

incompetent coder. Firstly, the Vectrex

simply doesn’t have much in the way of two

player gaming options, despite two joypad

ports. Many games can be played with

alternating players, but if you want to show

off your fancy new Vectrex to a baffled

friend, you need proper simultaneous two

player. The other advantage is that I

wouldn’t need to write much in the way of

artificial intelligence. And to think, my

computer science teacher worried I didn’t

have the right mindset to be a programmer.

What a fool! Sure, if I had done things his

way I’d be writing database software for a

bank and driving around in a Lamborghini,

instead of a 13 year old BMW that likes to

shut down in the middle of the road for no

apparent reason while everybody points

and laughs. But I wouldn’t get to make

spaceships move around on screen, so it’s a

fair compromise. I think.

 By now I was up to 6 or 7 games, including

my first properly complicated bit of code,

for a single screen worms-style artillery

game. Next came a basic stock car game,

played from overhead and then Tron. The

Vectrex is all about lines so Tron seemed a

natural fit. In theory. The unusual thing

about the Vectrex is that it has no

persistence. Nothing you draw stays on

screen for more than a frame – everything

has to be redrawn 50 times a second,

completely. Nothing else works like this,

although modern 3D games essentially

have to address the same issue. You have

30000 cpu cycles to get everything drawn

and then the entire process has to start

again as the previous frame’s lines fade

quickly from view. The Vectrex draws

graphics in the style of an oscilloscope – the

electron beam leaves a trail but it doesn’t

persist for long. The scaling of the lines you

draw also introduces delays and text is

especially hard. The OS routines for

displaying text are not fast, and grow

increasingly distorted the more letters you

display. Your 30,000 ticks are constantly

under pressure. With Tron I couldn’t write

the game in the usual manner, by adding a

pixel to the head of the snake, and simply

deleting a pixel from the tail. Instead I had

to store all the lines, including the special

case of lines that are longer than 128 units

(the maximum on the Vectrex) and also

keep extending the line forwards as the

player moves around the screen. This set of

lines then had to be packaged up to the OS

as a complete vector image, so it could be

drawn instantly, for both players. Well, no

problem – I have a few hundred bytes free,

if I wipe over ram that is used by other

games but which Tron doesn’t need. That

meant the missile system, the explosion

system, the block based collision system,

the particle system – they can all be

repurposed. I just need a collision system

that handles line intercepts and a giant

queue to handle the line ends. Also two of

everything because there are two players.

Oh my god that is some ugly code – but it

works. But still – all that rom code left to

fill. And I had better fill it fast or my

daughter will have left for university by the

time this cart is done. So I took the

Spacewar code, added gravity, and built a

series of caverns for the two ships to

navigate. A co-op game on the Vectrex!

With 100 rooms! Those 100 rooms nearly

killed me – level design is soooo tedious,

but eventually it was up and running. I

won’t bore you with the critical bugs, the

realisation that saving and loading also

force a bank switch, the easter eggs I added

which nearly broke everything and the

amount of data shuffling needed to fit 5

translated languages into the cart. I also

had Malban look over the code - “it’s very

good for a first game, but you probably

shouldn’t have written something this large

and here are all the things wrong with it” -

where he went through 22 thousand lines

of assembler looking for places where I

incremented a loop instead of

decrementing it (saving, 1 or 2 bytes) or

loaded two registers separately instead of

one (saving 1 byte). The man’s a mad

genius and I’m not ignoring help like that –

it all adds up. Bytes and clock cycles are

precious when you’re coding in the past.

Malban also helped me understand the

relationship between the scale of vectors

and their drawtime, which was invaluable

for getting the menu system to run without

dropping frames.

So the game is done, except for the hidden

Black Vector screensaver which I wrote at

the last minute, and the hidden message to

my girlfriend (because every girl dreams of

getting a feeble apology delivered on

antique hardware) and the other hidden

features I add because I can see some free

bytes just lying around doing nothing. Now

I’m up to 14 games, 6 screensavers, 10

utilities, 6 game settings, 5 languages, 11

alternative versions for the main games, 3

bits of hidden seasonal DLC and I get that

twitchy feeling when the project is finished

and you want to write some more code but

there’s nothing to write and nowhere to put

it anyway!

Figure 3 - The Vectrex in all its shining!

Figure 2 – Drawing with the Vectrex

RETROMAGAZINE YEAR 2 - ISSUE 13 PAGE 24

Official web site: www.RetroMagazine.net Facebook page: RetroMagazine

And that’s just the start of my problems.

Right now I’m a manufacturing hub

because to make a Vectrex game properly

you need to create carts, burn roms, solder

components onto pcbs, you need to find

somewhere that can make boxes, you need

to make some artwork, write manuals and

their translations (many thanks to all who

helped with that), draw posters for that

proper 80s feel, edit a web page and that’s

before you even get to packaging

everything up and talking to all your

customers. I also had to find a friendly

plastics manufacturer and carefully explain

what a Vectrex is, and why I need a

colourful two layer piece of polycarbonate

with a pretty pattern on it. My first step

towards all this was buying a 3D printer in

order to make carts. Test cart 1 looked like

that bit in Judgement Day where the T-

1000 is trying to reform after Linda

Hamilton blasts him with a shotgun. My

next attempt resembled the special effects

from the sci-fi classic The Thing. I’m a coder

– I don’t know anything about plastics! Now

I buy my carts from America where it

merely costs all the money. So hopefully

this will give you a slight idea why you

shouldn’t buy a Vectrex. I’m serious. You

have no idea what you’re getting yourself

into. Even if it is, without doubt, the very

greatest console ever made.

© 2019 Robin Jubber and RetroMagazine

Vectrex Technical Addendum

Here are the minimal steps to build your own
environment and write your “Hello World”.

1. Download the compiler as09.exe from this
LINK or try VIDE by Malban, which has an
assembler built in.

2. Choose an IDE. I initially went with Visual
Studio and created a rule in Tools -> External
Tools. Add a new external tool and call it Vectrex
Assembler. For Command enter
C:\Wherever\as09.exe and for Arguments use –
q $(ItemFilename). Tick Use Output Window
and leave the other options blank. You will also
want to add a keyboard shortcut, usually found in
Options, to execute this external tool on the
current file. I use F6, but your tastes may vary. Of
course you can skip all this and just use VIDE,
which has buttons to compile assembler into
6809.

3. Run your code. As09 will output a bin (binary
executable) file which you can load with ParaJVE,
a Vectrex emulator. ParaJVE can also handle
bank switching, but not save/load – although
these are features most Vectrex games do not
use or need. Again, VIDE has an emulator inside
the IDE, and it’s more accurate for spotting
framerate and draw problems.

4. Write some code. Each Vectrex game has a
header, which will be displayed by the OS on
bootup. After that header is where your code
begins. An example is provided in listing 1.

5. Become addicted to 6809 assembler and
watch your social life disintegrate.

Some handy hints for Vectrex development I
wish I knew beforehand:

• The OS routines for printing strings will fail with
no explanation if your string is just one character
long. You won’t have a clue why.
• The longer a string, the more distorted it will
become. In many cases it is better to scroll a
string than display it as one page of text.
• When designing graphics, for instance in
Blender, try and make your vector sprite as large
as possible – generally to fill the screen – then
scale it down to display it. The smaller the scale
of a vector list, the less cycles it will take to
display. There are subtle aspects to this
guidance, but in essence this is a good rule of
thumb.
• ParaJVE draws as if running on a magically
perfect Vectrex. No such beast exists in the wild.

• Any attempt to save or load will cause a bank
switch. Have all your EEPROM, initialisation and
bank switching code in identical locations in their
respective banks.
• Don’t worry too much about writing super
efficient assembler code, except inside critical
loops. Vector redraw is going to be your
framerate killer, unless you’re doing a lot of 3D
maths. In modern parlance, you’re most likely to
be “GPU bound”.
• On the 6809, most instructions, for instance
loads, will also affect the status flags.
• This page has a summary of the OS commands
and the registers destroyed after jumping into
these subroutines [LINK] - which is why a and b
will no longer hold their values after moving the
beam.
• When using the joysticks, you have to turn their
respective features ‘on’ – for instance movement
in x and y, and analogue control. If you don’t
need these facilities, leave them off and you will
save a bit of cpu time.
• Before displaying text at the start of the frame,
perform a move, otherwise the text will not show
up.
• Going back to 6502 or Z80 will *hurt* after
coding this chip.

; Define some OS routines we will need
OS_Intensity_7F equ $F2A9 ; sets the intensity of drawing to maximum
OS_Intensity_A equ $F2AB ; this version uses the a register
OS_Wait_Recal equ $F192 ; Vectrex BIOS recalibration
OS_Print_Str_D equ $F37A ; BIOS print routine
OS_Reset0ref equ $F354 ; Call frequently to avoid wobble
OS_Move equ $F2FC ; move to location specified by registers a and b
OS_Draw equ $F3DF ; draw by amount in registers a and b

; some assembler directives (optimise and start of code in memory)
 opt
 org 0

; HEADER SECTION
 db "g GCE 2018", $80
 dw $FF8F ; address of a (BIOS ROM) tune
 db $FC, $30, $20, -$58 ; height (negative), width, rel y, rel x
 db "JUBBERNAUT", $80 ; title: db sets aside some bytes in ram
 db 0 ; end of game header

; GAME
Main
 jsr OS_Wait_Recal ; start of draw cycle
 jsr OS_Intensity_7F ; set the intensity of the beam - 7F is max

Draw_A_Line
 jsr OS_Reset0ref ; Reset the beam
 lda #30
 ldb #-64
 jsr OS_Move ; Move to -64,30 (a and b are y and x)
 lda #0
 ldb #125
 jsr OS_Draw ; draw a horizontal line (0 units in y, 125 in x)

Write_Some_Text
 jsr OS_Reset0ref
 lda #0 ; OS_Draw corrupts registers a and b
 ldb #-60
 ldu #MESSAGE ; load the 16-bit U register with the string
 jsr OS_Print_Str_D ; call the OS print routine

Draw_Another_Line
 jsr OS_Reset0ref
 lda #-30
 ldb #-64
 jsr OS_Move
 lda #0
 ldb #127
 jsr OS_Draw
Main_End
 bra Main ; and return to the start of the game

MESSAGE db "ROBIN IS SKILL!",$80

; the Vectrex font is capitals only. Some punctuation and special symbols
; are also supported.

Listing 1 – “Hello World” coded in assembly for Vectrex/Motorola 6809

